1000 resultados para anorectal cancer
Resumo:
Objective: To describe patient participation and clinical performance in a colorectal cancer (CRC) screening program utilising faecal occult blood test (FOBT). Methods: A community-based intervention was conducted in a small, rural community in north Queensland, 2000/01. One of two FOBT kits – guaiac (Hemoccult-ll) or immunochemical (Inform) – was assigned by general practice and mailed to participants (3,358 patients aged 50–74 years listed with the local practices). Results: Overall participation in FOBT screening was 36.3%. Participation was higher with the immunochemical kit than the guaiac kit (OR=1.9, 95% Cl 1.6-2.2). Women were more likely to comply with testing than men (OR=1.4, 95% Cl 1.2-1.7), and people in their 60s were less likely to participate than those 70–74 years (OR=0.8, 95% Cl 0.6-0.9). The positivity rate was higher for the immunochemical (9.5%) than the guaiac (3.9%) test (χ2=9.2, p=0.002), with positive predictive values for cancer or adenoma of advanced pathology of 37.8% (95% Cl 28.1–48.6) for !nform and 40.0% (95% Cl 16.8–68.7) for Hemoccult-ll. Colonoscopy follow-up was 94.8% with a medical complication rate of 2–3%. Conclusions: An immunochemical FOBT enhanced participation. Higher positivity rates for this kit did not translate into higher false-positive rates, and both test types resulted in a high yield of neoplasia. Implications: In addition to type of FOBT, the ultimate success of a population-based screening program for CRC using FOBT will depend on appropriate education of health professionals and the public as well as significant investment in medical infrastructure for colonoscopy follow-up.
Resumo:
Radish sprouts and broccoli sprouts have been implicated in having a potential chemoprotective effect against certain types of cancer. Each contains a glucosinolate that can be broken down to an isothiocyanate capable of inducing chemoprotective factors known as phase 2 enzymes. In the case of broccoli, the glucosinolate, glucoraphanin, is converted to an isothiocyanate, sulforaphane, while in radish a similar glucosinolate, glucoraphenin, is broken down to form the isothiocyanate, sulforaphene. When sprouts are consumed fresh (uncooked), however, the principal degradation product of broccoli is not the isothiocyanate sulforaphane, but a nitrile, a compound with little anti-cancer potential. By contrast, radish sprouts produce largely the anti-cancer isothiocyanate, sulforaphene. The reason for this difference is likely to be due to the presence in broccoli (and absence in radish) of the enzyme cofactor, epithiospecifier protein (ESP). In vitro induction of the phase 2 enzyme, quinone reductase (QR), was significantly greater for radish sprouts than broccoli sprouts when extracts were self-hydrolysed. By contrast, boiled radish sprout extracts (deactivating ESP) to which myrosinase was subsequently added, induced similar QR activity to broccoli sprouts. The implication is that radish sprouts have potentially greater chemoprotective action against carcinogens than broccoli sprouts when hydrolysed under conditions similar to that during human consumption.
Resumo:
Radishes are most commonly consumed as a root vegetable, although radish leaves are occasionally used in salads and cooking. While both the radish root and shoot contain glucosinolates with anti-cancer potential, the glucosinolate profile of the root and the shoot are very different. Whereas the root contains mainly glucodehydroerucin (2.8 mol/gFW) (also known as glucoraphasatin), the main glucosinolate components of the shoot are glucoraphanin (2.8 mol/gFW) and glucoraphenin (2.1 mol/gFW). Upon hydrolysis, the latter glucosinolates produce sulforaphane and sulforaphene respectively, both potent inducers of mammalian phase 2 enzymes. Previously, radishes have been dismissed as having minimal anti-cancer potential based on studies with radish roots. However, depending on the cultivar, radish shoots can have up to 45 times the capacity of roots to induce phase 2 enzymes. In fact, shoots of a number of radish cultivars (eg. 'Black Spanish') have similar or greater anti-cancer potential than broccoli florets, a vegetable that has received considerable interest in this area.
Resumo:
Advanced stage head and neck cancers (HNC) with distant metastasis, as well as prostate cancers (PC), are devastating diseases currently lacking efficient treatment options. One promising developmental approach in cancer treatment is the use of oncolytic adenoviruses, especially in combination therapy with conventional cancer therapies. The safety of the approach has been tested in many clinical trials. However, antitumor efficacy needs to be improved in order to establish oncolytic viruses as a viable treatment alternative. To be able to test in vivo the effects on anti-tumor efficiency of a multimodal combination therapy of oncolytic adenoviruses with the standard therapeutic combination of radiotherapy, chemotherapy and Cetuximab monoclonal antibody (mAb), a xenograft HNC tumor model was developed. This model mimics the typical clinical situation as it is initially sensitive to cetuximab, but resistance develops eventually. Surprisingly, but in agreement with recent findings for chemotherapy and radiotherapy, a higher proportion of cells positive for HNC cancer stem cell markers were found in the tumors refractory to cetuximab. In vitro as well as in vivo results found in this study support the multimodal combination therapy of oncolytic adenoviruses with chemotherapy, radiotherapy and monoclonal antibody therapy to achieve increased anti-tumor efficiency and even complete tumor eradication with lower treatment doses required. In this study, it was found that capsid modified oncolytic viruses have increased gene transfer to cancer cells as well as an increased antitumor effect. In order to elucidate the mechanism of how oncolytic viruses promote radiosensitization of tumor cells in vivo, replicative deficient viruses expressing several promising radiosensitizing viral proteins were tested. The results of this study indicated that oncolytic adenoviruses promote radiosensitization by delaying the repair of DNA double strand breaks in tumor cells. Based on the promising data of the first study, two tumor double-targeted oncolytic adenoviruses armed with the fusion suicide gene FCU1 or with a fully human mAb specific for human Cytotoxic T Lymphocyte-Associated Antigen 4 (CTLA-4) were produced. FCU1 encodes a bifunctional fusion protein that efficiently catalyzes the direct conversion of 5-FC, a relatively nontoxic antifungal agent, into the toxic metabolites 5-fluorouracil and 5-fluorouridine monophosphate, bypassing the natural resistance of certain human tumor cells to 5-fluorouracil. Anti-CTLA4 mAb promotes direct killing of tumor cells via apoptosis and most importantly immune system activation against the tumors. These armed oncolytic viruses present increased anti-tumor efficacy both in vitro and in vivo. Furthermore, by taking advantage of the unique tumor targeted gene transfer of oncolytic adenoviruses, functional high tumor titers but low systemic concentrations of the armed proteins were generated. In addition, supernatants of tumor cells infected with Ad5/3-24aCTLA4, which contain anti-CTLA4 mAb, were able to effectively immunomodulate peripheral blood mononuclear cells (PBMC) of cancer patients with advanced tumors. -- In conclusion, the results presented in this thesis suggest that genetically engineered oncolytic adenoviruses have great potential in the treatment of advanced and metastatic HNC and PC.
Resumo:
In cancer, a subpopulation of malignant cells expresses markers of normal stem cells. These cells have the potential of initiating tumor growth and therefore also tumor recurrence. Thus, these cells are called cancer stem cells. A myriad of markers have been applied to identify these cells, but no single marker can be found exclusively in cancer stem cells. In many types of cancer, clinical recurrence and tumor progression are the main causes of mortality, despite intense oncological treatment. It has been proposed that the presence of cancer stem cells causes this resistance to therapy. The scope of this thesis is to investigate the role of stem cell markers and genes in the clinical setting. Especially, the aim was to elucidate the clinical significance of stem cell markers as novel prognostic and diagnostic tools in cancer. Tumor biopsy material from central nervous system tumors (oligodendroglioma, astrocytoma and glioblatoma), neural crest derived tumors (pheochromocytomas) and oral carcinoma was screened for stem cell markers. Initially, 15 stem cell markers were screened in a test series of gliomas. The markers applied for expanded tumor analyses (in 305 cases of glioma, 42 cases of pheochromocytoma, and 73 cases of oral carcinoma) were BMI-1, Snail, p16, mdm2, and c-Myc. Data on marker expression was compared with clinical and pathological parameters. In gliomas, BMI-1 expression was found in nearly all tumors analyzed, but the frequency of BMI-1 expressing cells was highly variable, ranging from 1 to 100%. In oligodendroglioma, BMI-1 expression was identified as a prognostic marker independent of tumor grade and clinical parameters. In pheochromocytoma, Snail expression was shown to distinguish between the metastatic and non-metastatic forms of the tumor. Snail expression was seen only in metastatic tumors, whereas non-metastatic tumors did not commonly express Snail. Finally, in oral carcinoma, BMI-1 expression was seen in roughly 80% of tumors, and Snail expression was high or very high in all cases. The lack of BMI-1 expression was associated with early relapse in oral carcinoma.
Resumo:
BACKGROUND Hydrogel-based cell cultures are excellent tools for studying physiological events occurring in the growth and proliferation of cells, including cancer cells. Diffusion magnetic resonance is a physical technique that has been widely used for the characterisation of biological systems as well as hydrogels. In this work, we applied diffusion magnetic resonance imaging (MRI) to hydrogel-based cultures of human ovarian cancer cells. METHODS Diffusion-weighted spin-echo MRI measurements were used to obtain spatially-resolved maps of apparent diffusivities for hydrogel samples with different compositions, cell loads and drug (Taxol) treatment regimes. The samples were then characterised using their diffusivity histograms, mean diffusivities and the respective standard deviations, and pairwise Mann-Whitney tests. The elastic moduli of the samples were determined using mechanical compression testing. RESULTS The mean apparent diffusivity of the hydrogels was sensitive to the polymer content, cell load and Taxol treatment. For a given sample composition, the mean apparent diffusivity and the elastic modulus of the hydrogels exhibited a negative correlation. CONCLUSIONS Diffusivity of hydrogel-based cancer cell culture constructs is sensitive to both cell proliferation and Taxol treatment. This suggests that diffusion-weighted imaging is a promising technique for non-invasive monitoring of cancer cell proliferation in hydrogel-based, cellularly-sparse 3D cell cultures. The negative correlation between mean apparent diffusivity and elastic modulus suggests that the diffusion coefficient is indicative of the average density of the physical microenvironment within the hydrogel construct.
Resumo:
Candidate gene studies have reported CYP19A1 variants to be associated with endometrial cancer and with estradiol (E2) concentrations. We analyzed 2937 single nucleotide polymorphisms (SNPs) in 6608 endometrial cancer cases and 37 925 controls and report the first genome wide-significant association between endometrial cancer and a CYP19A1 SNP (rs727479 in intron 2, P=4.8x10(-11)). SNP rs727479 was also among those most strongly associated with circulating E2 concentrations in 2767 post-menopausal controls (P=7.4x10(-8)). The observed endometrial cancer odds ratio per rs727479 A-allele (1.15, CI=1.11-1.21) is compatible with that predicted by the observed effect on E2 concentrations (1.09, CI=1.03-1.21), consistent with the hypothesis that endometrial cancer risk is driven by E2. From 28 candidate-causal SNPs, 12 co-located with three putative gene-regulatory elements and their risk alleles associated with higher CYP19A1 expression in bioinformatical analyses. For both phenotypes, the associations with rs727479 were stronger among women with a higher BMI (Pinteraction=0.034 and 0.066 respectively), suggesting a biologically plausible gene-environment interaction.
Resumo:
Epidemiological studies have demonstrated associations between endometriosis and certain histotypes of ovarian cancer, including clear cell, low-grade serous and endometrioid carcinomas. We aimed to determine whether the observed associations might be due to shared genetic aetiology. To address this, we used two endometriosis datasets genotyped on common arrays with full-genome coverage (3194 cases and 7060 controls) and a large ovarian cancer dataset genotyped on the customized Illumina Infinium iSelect (iCOGS) arrays (10 065 cases and 21 663 controls). Previous work has suggested that a large number of genetic variants contribute to endometriosis and ovarian cancer (all histotypes combined) susceptibility. Here, using the iCOGS data, we confirmed polygenic architecture for most histotypes of ovarian cancer. This led us to evaluate if the polygenic effects are shared across diseases. We found evidence for shared genetic risks between endometriosis and all histotypes of ovarian cancer, except for the intestinal mucinous type. Clear cell carcinoma showed the strongest genetic correlation with endometriosis (0.51, 95% CI = 0.18–0.84). Endometrioid and low-grade serous carcinomas had similar correlation coefficients (0.48, 95% CI = 0.07–0.89 and 0.40, 95% CI = 0.05–0.75, respectively). High-grade serous carcinoma, which often arises from the fallopian tubes, showed a weaker genetic correlation with endometriosis (0.25, 95% CI = 0.11–0.39), despite the absence of a known epidemiological association. These results suggest that the epidemiological association between endometriosis and ovarian adenocarcinoma may be attributable to shared genetic susceptibility loci.
Resumo:
Colorectal cancer is one of the three most common cancers today, for both men and women. Approximately 90% of the cases are sporadic while the remaining 10% is hereditary. Among this 10% is hereditary nonpolyposis colorectal cancer (HNPCC), an autosomal dominant disease, accounting for up to 13% of these cases. HNPCC is associated with germline mutations in four mismatch repair (MMR) genes, MLH1, MSH2, MSH6, and PMS2, and is characterized by a familial accumulation of endometrial, gastric, urological, and ovarian tumors, in addition to colorectal cancer. An important etiological characteristic of HNPCC is the presence of microsatellite instability (MSI), caused by mutations of the MMR genes. Approximately 15% of sporadic cases share the MSI+ trait. Colon cancer is believed to be a consequence of an accumulation of mutations in tumor suppressor genes and oncogenes, eventually resulting in tumor development. This phenomena is accelerated in HNPCC due the presence of an inherited mutation in the MMR genes, accounting for one of the two hits proposed to be needed by Knudson (1971) in order for the manifestation of the MSI phenotype. MMR alterations alone, however, do not occur in the majority of sporadic colon cancers, prompting searches for other mechanisms. One such mechanism found to play a role in colon cancer development was DNA methylation, which is known to play a role in MLH1 inactivation. Our objective was clarification of mechanisms associated with tumor development in both HNPCC and sporadic colorectal cancer in relation to tumorigenic mechanisms. Of particular interest were underlying mechanisms of MSI in sporadic colorectal cancers, with attention to DNA methylation changes and their correlation to MSI. Of additional interest were the genetic and epigenetic events leading to the HNPCC tumor spectrum, chiefly colon and endometrial cancers, in regards to what extent the somatic changes in target tissue explained this phenomenon. We made a number of important findings pertaining to these questions. First, MSI tumor development differs epigenetically from stable tumor development, possibly underlying developmental pathway differences. Additionally, while epigenetic modification, principally DNA methylation, is a major mechanism in sporadic MSI colorectal cancer MLH1 inactivation it does not play a significant role in HNPCC tumors with germline MLH1 mutations. This is possibly an explanation for tumorigenic pathways and clinicopathological characteristic differences between sporadic and hereditary MSI colorectal cancers. Finally, despite indistinguishable genetic predisposition for endometrial and colorectal cancers, instability profiles highlighting organ-specific differences, may be important HNPCC tumor spectrum determinants.
Resumo:
Microarrays have a wide range of applications in the biomedical field. From the beginning, arrays have mostly been utilized in cancer research, including classification of tumors into different subgroups and identification of clinical associations. In the microarray format, a collection of small features, such as different oligonucleotides, is attached to a solid support. The advantage of microarray technology is the ability to simultaneously measure changes in the levels of multiple biomolecules. Because many diseases, including cancer, are complex, involving an interplay between various genes and environmental factors, the detection of only a single marker molecule is usually insufficient for determining disease status. Thus, a technique that simultaneously collects information on multiple molecules allows better insights into a complex disease. Since microarrays can be custom-manufactured or obtained from a number of commercial providers, understanding data quality and comparability between different platforms is important to enable the use of the technology to areas beyond basic research. When standardized, integrated array data could ultimately help to offer a complete profile of the disease, illuminating mechanisms and genes behind disorders as well as facilitating disease diagnostics. In the first part of this work, we aimed to elucidate the comparability of gene expression measurements from different oligonucleotide and cDNA microarray platforms. We compared three different gene expression microarrays; one was a commercial oligonucleotide microarray and the others commercial and custom-made cDNA microarrays. The filtered gene expression data from the commercial platforms correlated better across experiments (r=0.78-0.86) than the expression data between the custom-made and either of the two commercial platforms (r=0.62-0.76). Although the results from different platforms correlated reasonably well, combining and comparing the measurements were not straightforward. The clone errors on the custom-made array and annotation and technical differences between the platforms introduced variability in the data. In conclusion, the different gene expression microarray platforms provided results sufficiently concordant for the research setting, but the variability represents a challenge for developing diagnostic applications for the microarrays. In the second part of the work, we performed an integrated high-resolution microarray analysis of gene copy number and expression in 38 laryngeal and oral tongue squamous cell carcinoma cell lines and primary tumors. Our aim was to pinpoint genes for which expression was impacted by changes in copy number. The data revealed that especially amplifications had a clear impact on gene expression. Across the genome, 14-32% of genes in the highly amplified regions (copy number ratio >2.5) had associated overexpression. The impact of decreased copy number on gene underexpression was less clear. Using statistical analysis across the samples, we systematically identified hundreds of genes for which an increased copy number was associated with increased expression. For example, our data implied that FADD and PPFIA1 were frequently overexpressed at the 11q13 amplicon in HNSCC. The 11q13 amplicon, including known oncogenes such as CCND1 and CTTN, is well-characterized in different type of cancers, but the roles of FADD and PPFIA1 remain obscure. Taken together, the integrated microarray analysis revealed a number of known as well as novel target genes in altered regions in HNSCC. The identified genes provide a basis for functional validation and may eventually lead to the identification of novel candidates for targeted therapy in HNSCC.
Resumo:
Suusyöpä Teheranissa, Iranissa 1993-2003 Tämän väitöskirjan tavoitteena oli kuvata suusyövän yleisyyttä ja siihen vaikuttavia tekijöitä Teheranissa, Iranissa tutkimalla suusyöpäpotilaita, suusyöpäkasvainten ominaisuuksia, potilaille tehtyjä diagnooseja ja niiden viivästymistä sekä heidän selviytymistä sairaudestaan. Suusyöpäkasvainten tietoja kerättiin 1042 suusyöpäpotilaalta. Nämä tiedot kerättiin 30 suurimman Teheranilaissairaalan potilaskortistoista vuosien 1993-2003 ajalta. Eloonjäämisanalyysiä varten tiedot kerättiin vuosien 1996-2003 arkistoista 470 suusyöpä- ja 82 huulisyöpäpotilaan osalta ja heitä seurattiin vuoden 2005 loppuun. Potilaan kokemien ensioireiden ja lopullisen syöpädiagnoosin välistä viivettä varten kerättiin tiedot Teheranilaisista sairaaloista 100 peräkkäisen suusyöpäpotilaan tiedoista vuosien 2004-2006 välillä. Ns diagnostinen viive jaettiin kahteen osaan: 1) ensioireiden ja ensimmäisen sitä seuranneen lääkärikäynnin väli ja 2) ensimmäisen lääkärikäynnin ja lopullisen diagnoosin välinen ero. Useimmat suusyövät olivat pitkälle edenneitä diagnoosin tekemisen hetkellä, kasvain oli siis yli 4 senttimetriä halkaisijaltaan ja/tai kaulan alueen imusolmukkeissa oli jo etäpesäkkeitä. Eloonjäämistodennäköisyys viiden vuoden aikavälillä oli suusyöpäpotilaille 30% ja huulisyöpäpotilaille 62%, mitkä olivat merkittävästi alempia kuin yleisesti länsimaissa vastaavat luvut. Tämä tutkimus osoitti, että keskimääräinen diagnostinen viive oli korkea (7,2 kk, SD 7,5), erityisesti kun niitä verrataan kehittyneimpien terveydenhuoltojärjestelmien vastaaviin tietoihin. Yleensä potilaasta aiheutuva viive oli huomattavan suuri ensioireiden ja lopullisen diagnoosin välisestä ajasta. Tässä tutkimuksessa tehtyjen havaintojen pohjalta on perusteltua esittää kehitettäväksi ennaltaehkäisevä tiedotusohjelma, jossa kansalaiset voisivat saada enemmän tietoa suusyövästä, sen ensioireista jotta he hakeutuisivat aikaisemmin hoitoon. Lisäksi terveydenhoitohenkilöstöä, erityisesti hammaslääkärejä ja suuhygienistejä tulisi kouluttaa varhaisen diagnoosin tekemiseksi, jotta Iranissa tehtävien suusyöpähoitojen lopputulokset paranisivat.
Resumo:
Objective and background. Tobacco smoking, pancreatitis and diabetes mellitus are the only known causes of pancreatic cancer, leaving ample room for yet unidentified determinants. This is an empirical study on a Finnish data on occupational exposures and pancreatic cancer risk, and a non-Bayesian and a hierarchical Bayesian meta-analysis of data on occupational factors and pancreatic cancer. Methods. The case-control study analyzed 595 incident cases of pancreatic cancer and 1,622 controls of stomach, colon, and rectum cancer, diagnosed 1984-1987 and known to be dead by 1990 in Finland. The next-of-kin responded to a mail questionnaire on job and medical histories and lifestyles. Meta-analysis of occupational risk factors of pancreatic cancer started off with 1,903 identified studies. The analyses were based on different subsets of that database. Five epidemiologists examined the reports and extracted the pertinent data using a standardized extraction form that covered 20 study descriptors and the relevant relative risk estimates. Random effects meta-analyses were applied for 23 chemical agents. In addition, hierarchical Bayesian models for meta-analysis were applied to the occupational data of 27 job titles using job exposure matrix as a link matrix and estimating the relative risks of pancreatic cancer associated with nine occupational agents. Results. In the case-control study, logistic regressions revealed excess risks of pancreatic cancer associated with occupational exposures to ionizing radiation, nonchlorinated solvents, and pesticides. Chlorinated hydrocarbon solvents and related compounds, used mainly in metal degreasing and dry cleaning, are emerging as likely risk factors of pancreatic cancer in the non-Bayesian and the hierarchical Bayesian meta-analysis. Consistent excess risk was found for insecticides, and a high excess for nickel and nickel compounds in the random effects meta-analysis but not in the hierarchical Bayesian meta-analysis. Conclusions. In this study occupational exposure to chlorinated hydrocarbon solvents and related compounds and insecticides increase risk of pancreatic cancer. Hierarchical Bayesian meta-analysis is applicable when studies addressing the agent(s) under study are lacking or very few, but several studies address job titles with potential exposure to these agents. A job-exposure matrix or a formal expert assessment system is necessary in this situation.