998 resultados para ZnO Thin Films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-destructive testing (NDT) is the use of non-invasive techniques to determine the integrity of a material, component, or structure. Engineers and scientists use NDT in a variety of applications, including medical imaging, materials analysis, and process control.Photothermal beam deflection technique is one of the most promising NDT technologies. Tremendous R&D effort has been made for improving the efficiency and simplicity of this technique. It is a popular technique because it can probe surfaces irrespective of the size of the sample and its surroundings. This technique has been used to characterize several semiconductor materials, because of its non-destructive and non-contact evaluation strategy. Its application further extends to analysis of wide variety of materials. Instrumentation of a NDT technique is very crucial for any material analysis. Chapter two explores the various excitation sources, source modulation techniques, detection and signal processing schemes currently practised. The features of the experimental arrangement including the steps for alignment, automation, data acquisition and data analysis are explained giving due importance to details.Theoretical studies form the backbone of photothermal techniques. The outcome of a theoretical work is the foundation of an application.The reliability of the theoretical model developed and used is proven from the studies done on crystalline.The technique is applied for analysis of transport properties such as thermal diffusivity, mobility, surface recombination velocity and minority carrier life time of the material and thermal imaging of solar cell absorber layer materials like CuInS2, CuInSe2 and SnS thin films.analysis of In2S3 thin films, which are used as buffer layer material in solar cells. The various influences of film composition, chlorine and silver incorporation in this material is brought out from the measurement of transport properties and analysis of sub band gap levels.The application of photothermal deflection technique for characterization of solar cells is a relatively new area that requires considerable attention.The application of photothermal deflection technique for characterization of solar cells is a relatively new area that requires considerable attention. Chapter six thus elucidates the theoretical aspects of application of photothermal techniques for solar cell analysis. The experimental design and method for determination of solar cell efficiency, optimum load resistance and series resistance with results from the analysis of CuInS2/In2S3 based solar cell forms the skeleton of this chapter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel fibre optic sensor for the in situ measurement of the rate of deposition of thin films has been developed. Evanescent wave in the uncladded portion of a multimode fibre is utilised for this sensor development. In the present paper we demonstrate how this sensor is useful for the monitoring of the deposition rate of polypyrrole thin films, deposited by an AC plasma polymerisation method. This technique is simple, accurate and highly sensitive compared with existing techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work mainly concentrate to understand the optical and electrical properties of amorphous zinc tin oxide and amorphous zinc indium tin oxide thin films for TFT applications. Amorphous materials are promising in achieving better device performance on temperature sensitive substrates compared to polycrystalline materials. Most of these amorphous oxides are multicomponent and as such there exists the need for an optimized chemical composition. For this we have to make individual targets with required chemical composition to use it in conventional thin film deposition techniques like PLD and sputtering. Instead, if we use separate targets for each of the cationic element and if separately control the power during the simultaneous sputtering process, then we can change the chemical composition by simply adjusting the sputtering power. This is what is done in co-sputtering technique. Eventhough there had some reports about thin film deposition using this technique, there was no reports about the use of this technique in TFT fabrication until very recent time. Hence in this work, co-sputtering has performed as a major technique for thin film deposition and TFT fabrication. PLD were also performed as it is a relatively new technique and allows the use high oxygen pressure during deposition. This helps to control the carrier density in the channel and also favours the smooth film surface. Both these properties are crucial in TFT.Zinc tin oxide material is interesting in the sense that it does not contain costly indium. Eventhough some works were already reported in ZTO based TFTs, there was no systematic study about ZTO thin film's various optoelectronic properties from a TFT manufacturing perspective. Attempts have made to analyse the ZTO films prepared by PLD and co-sputtering. As more type of cations present in the film, chances are high to form an amorphous phase. Zinc indium tin oxide is studied as a multicomponent oxide material suitable for TFT fabrication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis can be divided into three areas:1) the fabrication of a low temperature photo-luminescence and photoconductivity measuring unit 2) photo-luminescence in the chalcopyrite CulnSez and CulnS2 system for defect and composition analysis and 3) photo-luminescence and photo-conductivity of In:JS3. This thesis shows that photo-luminescence is one of most essential semiconductor characterization tool for a scientific group working on photovoltaics. Tools which can be robust, non-destructive, requiring minimal sample preparation for analysis and most informative of the device applications are sought after by industries and this thesis is towards establishing photo-luminescence as "THE" tool for semiconductor characterization. The possible application of photo-luminescence as a tool for compositional and quality analysis of semiconductor thin films has been worked upon by this thesis. Photo-conductivity complement photo-luminescence and together they provide all the information required for the fabrication of an opto-electronic device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Màster en Nanociència i Nanotecnologia curs 2006-2007. Directors: Francesca Peiró i Martínez and Jordi Arbiol i Cobos

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyfurfural thin films lying in the thickness range of 1300–2000 A˚ were prepared by ac plasma polymerization technique. The current–voltage characteristics in symmetric and asymmetric electrode configuration were studied with a view to determining the dominant conduction mechanism.It was found that the Schottky conduction mechanism is dominant in plasma polymerized furfural thin films.The predominance of Schottky mechanism was further confirmed based on the thermally stimulated current measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma polymerization is found to be an excellent technique for the preparation of good quality, pinhole-free, polymer thin films from different monomer precursors. The present work describes the preparation and characterization of polypyrrole (PPy) thin films by ac plasma polymerization technique in their pristine and in situ iodine doped forms. The electrical conductivity studies of the aluminiumpolymeraluminium (AlpolymerAl) structures have been carried out and a space charge limited conduction (SCLC) mechanism is identified as the most probable mechanism of carrier transport in these polymer films. The electrical conductivity shows an enhanced value in the iodine doped sample. The reduction of optical band gap by iodine doping is correlated with the observed conductivity results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferrofluids belonging to the series, Ni x Fe1-x Fe2O4 and Zn x Fe1-x Fe2O4, were synthesized using cold co-precipitation. Liquid films of these ferrofluids were prepared by encapsulating the ferrofluids in between two optically smooth and ultrasonically cleaned glass plates. Magnetic field induced laser transmission through these ferrofluid films has been investigated. Magnetic field values can be calibrated in terms of output laser power in the low field region in which the variation is linear. This set up can be used as a cheap optical gaussmeter in the low field regime. Using the same set-up, the saturation magnetization of the sample used can also be calculated with a sample that is pre-characterized. Hence both magnetization of the sample, as well as applied magnetic field can be sensed and calculated with a precalibrated sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, we describe our efforts to develop device quality CuInSe2, films through low cost, simple and eco-friendly hybrid techniques. The most important point to be highlighted here is that the method fully avoids the use of poisonous gases such as H2Se/Se vapour. Instead, selenisation is achieved through solid state reaction between amorphous selenium and polycrystalline metal layers resulting in both binary and ternary selenides. Thin films of amorphous selenium (a-Se) used for this is deposited using Chemical Bath Deposition (CBD). CulnSe2 films are prepared through the selenisation process. Another PV material, indium selenide (In2Se3) thin films are also prepared using this process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis Entitled Electrical switching studies on the thin flims of polyfuran and polyacrylonitrile prepared by plasma polymerisation and vacuum evaporated amorphous silicon.A general introduction to the switching and allied phenomena is presented. Subsequently, developments of switching in thin films are described. The Mott transition is qualitatively presented. The working of a switching transitor is outlined and compared to the switching observed in thin films. Characteristic parameters of switching such as threshold voltage, time response to a, voltage pulse, and delay time are described. The various switching configurations commonly used are discussed. The mechanisms used to explain the switching behaviour like thermal, electrothermal and purely electronic are reviewed. Finally the scope, feasibility and the importance of polymer thin films in switching are highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Present work deals with the Preparation and characterization of high-k aluminum oxide thin films by atomic layer deposition for gate dielectric applications.The ever-increasing demand for functionality and speed for semiconductor applications requires enhanced performance, which is achieved by the continuous miniaturization of CMOS dimensions. Because of this miniaturization, several parameters, such as the dielectric thickness, come within reach of their physical limit. As the required oxide thickness approaches the sub- l nm range, SiO 2 become unsuitable as a gate dielectric because its limited physical thickness results in excessive leakage current through the gate stack, affecting the long-term reliability of the device. This leakage issue is solved in the 45 mn technology node by the integration of high-k based gate dielectrics, as their higher k-value allows a physically thicker layer while targeting the same capacitance and Equivalent Oxide Thickness (EOT). Moreover, Intel announced that Atomic Layer Deposition (ALD) would be applied to grow these materials on the Si substrate. ALD is based on the sequential use of self-limiting surface reactions of a metallic and oxidizing precursor. This self-limiting feature allows control of material growth and properties at the atomic level, which makes ALD well-suited for the deposition of highly uniform and conformal layers in CMOS devices, even if these have challenging 3D topologies with high aspect-ratios. ALD has currently acquired the status of state-of-the-art and most preferred deposition technique, for producing nano layers of various materials of technological importance. This technique can be adapted to different situations where precision in thickness and perfection in structures are required, especially in the microelectronic scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A brief account of the several methods used for the production of thin films is presented in this Chapter. The discussions stress on the important methods used for the fabrication of a-si:H thin films. This review' also reveals ‘that almost all the general methods, like vacuum evaporation, sputtering, glow discharge and even chemical methods are currently employed for the production of a-Si:H thin films. Each method has its own advantages and disadvantages. However, certain methods are generally preferred. Subsequently a detailed account of the method used here for the preparation of amorphous silicon thin films and their hydrogenation is presented. The metal chamber used for the electrical and dielectric measurements is also described. A brief mention is made-on the electrode structure, film area and film geometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis deals with preparing stoichiometric crystalline thin films of InSe and In2Se3 by elemental evapouration and their property investigation.In the present study three temperature( or Elemental evapouration) method is utilized for the deposition of crystalline thin films . The deposition mechanism using three temperature method deals’ with condensation of solids on heated surfaces when the critical supersaturation of the vapour phase exceeds a certain limit. The critical values of the incident flux are related to substrate temperature and the interfacial energies of the involved vapours. At a favorable presence of component atoms in the vapour phase these can react and condense onto a substrate even at a elevated temperature. In the studies conducted the most significant factor is the formation of single compositional film namely indium mono selenide in the In –se system of compounds .Further this work shows the feasibility of thin film photovoltaic junctions of the schottky barrier type

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis the preparation and properties of thin films of certain semiconducting sulphides (sulphides of tin, copper and indium) are reported. As single source evaporation does not yield satisfactory films of these compounds for a variety of reasons, reactive evaporation of the metal in a sulphur atmosphere has been used for film preparation. It was found that for each metal sulphide a stoichimetric interval of fluxes and substrate temperature exists for the formation of the compound in accordance with the analysis of Guenther. The first chapter of the thesis gives a resume of the basic principles of semiconductor physics relevant to the work reported here. In the second chapter is discussed in detail the reactive evaporation techniques like ordinary reactive evaporation, activated reactive evaporation and reactive ion plating. Third chapter deals with the experimental techniques used in this study for film preparation and characterization. In the next seven chapters is discussed the preparation and properties of the compound films studied. The last chapter gives a general theory of the formation of compound films in various deposition techniques in terms of the kinetic energy of the film forming particles. It must be mentioned here that this is of fundamental importance to thin film deposition and is virtually untouched in the literature

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the early 19th century, industrial revolution was fuelled mainly by the development of machine based manufacturing and the increased use of coal. Later on, the focal point shifted to oil, thanks to the mass-production technology, ease of transport/storage and also the (less) environmental issues in comparison with the coal!! By the dawn of 21st century, due to the depletion of oil reserves and pollution resulting from heavy usage of oil the demand for clean energy was on the rising edge. This ever growing demand has propelled research on photovoltaics which has emerged successful and is currently being looked up to as the only solace for meeting our present day energy requirements. The proven PV technology on commercial scale is based on silicon but the recent boom in the demand for photovoltaic modules has in turn created a shortage in supply of silicon. Also the technology is still not accessible to common man. This has onset the research and development work on moderately efficient, eco-friendly and low cost photovoltaic devices (solar cells). Thin film photovoltaic modules have made a breakthrough entry in the PV market on these grounds. Thin films have the potential to revolutionize the present cost structure of solar cells by eliminating the use of the expensive silicon wafers that alone accounts for above 50% of total module manufacturing cost.Well developed thin film photovoltaic technologies are based on amorphous silicon, CdTe and CuInSe2. However the cell fabrication process using amorphous silicon requires handling of very toxic gases (like phosphene, silane and borane) and costly technologies for cell fabrication. In the case of other materials too, there are difficulties like maintaining stoichiometry (especially in large area films), alleged environmental hazards and high cost of indium. Hence there is an urgent need for the development of materials that are easy to prepare, eco-friendly and available in abundance. The work presented in this thesis is an attempt towards the development of a cost-effective, eco-friendly material for thin film solar cells using simple economically viable technique. Sn-based window and absorber layers deposited using Chemical Spray Pyrolysis (CSP) technique have been chosen for the purpose