986 resultados para Vectors.
Resumo:
BACKGROUND: Up to now, the different uptake pathways and the subsequent intracellular trafficking of plasmid DNA have been largely explored. By contrast, the mode of internalization and the intracellular routing of an exogenous mRNA in transfected cells are poorly investigated and remain to be elucidated. The bioavailability of internalized mRNA depends on its intracellular routing and its potential accumulation in dynamic sorting sites for storage: stress granules and processing bodies. This question is of particular significance when a secure transposon-based system able to integrate a therapeutic transgene into the genome is used. Transposon vectors usually require two components: a plasmid DNA, carrying the gene of interest, and a source of transposase allowing the integration of the transgene. The principal drawback is the lasting presence of the transposase, which could remobilize the transgene once it has been inserted. Our study focused on the pharmacokinetics of the transposition process mediated by the piggyBac transposase mRNA transfection. Exogenous mRNA internalization and trafficking were investigated towards a better apprehension and fine control of the piggyBac transposase bioavailability. RESULTS: The mRNA prototype designed in this study provides a very narrow expression window of transposase, which allows high efficiency transposition with no cytotoxicity. Our data reveal that exogenous transposase mRNA enters cells by clathrin and caveolae-mediated endocytosis, before finishing in late endosomes 3 h after transfection. At this point, the mRNA is dissociated from its carrier and localized in stress granules, but not in cytoplasmic processing bodies. Some weaker signals have been observed in stress granules at 18 h and 48 h without causing prolonged production of the transposase. So, we designed an mRNA that is efficiently translated with a peak of transposase production 18 h post-transfection without additional release of the molecule. This confines the integration of the transgene in a very small time window. CONCLUSION: Our results shed light on processes of exogenous mRNA trafficking, which are crucial to estimate the mRNA bioavailability, and increase the biosafety of transgene integration mediated by transposition. This approach provides a new way for limiting the transgene copy in the genome and their remobilization by mRNA engineering and trafficking.
Resumo:
Estudi realitzat a partir d’una estada al Institut de Génétique Moléculaire de Montpellier, França, entre 2010 i 2012. En aquest projecte s’ha avaluat les avantatges dels vectors adenovirals canins tipus 2 (CAV2) com a vectors de transferència gènica al sistema nerviós central (SNC) en un model primat no-humà i en un model caní del síndrome de Sly (mucopolisacaridosis tipus 7, MPS VII), malaltia monogènica que cursa amb neurodegeneració. En una primera part del projecte s’ha avaluat la biodistribució, l’eficàcia i la durada de l’expressió del transgen en un model primat no humà, (Microcebus murinus). Com ha vector s’ha utilitzat un CAV2 de primera generació que expressa la proteïna verda fluorescent (CAVGFP). Els resultats aportats en aquesta memòria demostren que en primats no humans, com en d’altres espècies testades anteriorment per l’equip de l’EJ Kremer, la injecció intracerebral de CAV2 resulta en una extensa transducció del SNC, siguent les neurones i els precursors neuronals les cèl•lules preferencialment transduïdes. Els vectors canins, servint-se de vesícules intracel•lulars són transportats, majoritàriament, des de les sinapsis cap al soma neuronal, aquest transport intracel•lular permet una extensa transducció del SNC a partir d’una única injecció intracerebral dels vectors virals. En una segona part d’aquest projecte s’ha avaluat l’ús terapèutic dels CAV2. S’ha injectat un vector helper-dependent que expressa el gen la b-glucuronidasa i el gen de la proteïna verda fluorescent (HD-RIGIE), en el SNC del model caní del síndrome de Sly (MPS VII). La biodistribució i la eficàcia terapèutica han estat avaluades. Els nivells d’activitat enzimàtica en animals malalts injectats amb el vector terapèutic va arribar a valors similars als dels animals no afectes. A més a més s’ha observat una reducció en la quantitat dels GAGs acumulats en les cèl•lules dels animals malalts tractats amb el vector terapèutic, demostrant la potencialitat terapèutica dels CAV2 per a malalties que afecten al SNC. Els resultats aportats en aquest treball ens permeten dir que els CAV2 són unes bones eines terapèutiques per al tractament de malalties que afecten al SNC.
Resumo:
The cDNA encoding the NH2-terminal 589 amino acids of the extracellular domain of the human polymeric immunoglobulin receptor was inserted into transfer vectors to generate recombinant baculo- and vaccinia viruses. Following infection of insect and mammalian cells, respectively, the resulting truncated protein corresponding to human secretory component (hSC) was secreted with high efficiency into serum-free culture medium. The Sf9 insect cell/baculovirus system yielded as much as 50 mg of hSC/liter of culture, while the mammalian cells/vaccinia virus system produced up to 10 mg of protein/liter. The M(r) of recombinant hSC varied depending on the cell line in which it was expressed (70,000 in Sf9 cells and 85-95,000 in CV-1, TK- 143B and HeLa). These variations in M(r) resulted from different glycosylation patterns, as evidenced by endoglycosidase digestion. Efficient single-step purification of the recombinant protein was achieved either by concanavalin A affinity chromatography or by Ni(2+)-chelate affinity chromatography, when a 6xHis tag was engineered to the carboxyl terminus of hSC. Recombinant hSC retained the capacity to specifically reassociate with dimeric IgA purified from hybridoma cells.
Resumo:
A fundamental question in developmental biology is how tissues are patterned to give rise to differentiated body structures with distinct morphologies. The Drosophila wing disc offers an accessible model to understand epithelial spatial patterning. It has been studied extensively using genetic and molecular approaches. Bristle patterns on the thorax, which arise from the medial part of the wing disc, are a classical model of pattern formation, dependent on a pre-pattern of trans-activators and –repressors. Despite of decades of molecular studies, we still only know a subset of the factors that determine the pre-pattern. We are applying a novel and interdisciplinary approach to predict regulatory interactions in this system. It is based on the description of expression patterns by simple logical relations (addition, subtraction, intersection and union) between simple shapes (graphical primitives). Similarities and relations between primitives have been shown to be predictive of regulatory relationships between the corresponding regulatory factors in other Systems, such as the Drosophila egg. Furthermore, they provide the basis for dynamical models of the bristle-patterning network, which enable us to make even more detailed predictions on gene regulation and expression dynamics. We have obtained a data-set of wing disc expression patterns which we are now processing to obtain average expression patterns for each gene. Through triangulation of the images we can transform the expression patterns into vectors which can easily be analysed by Standard clustering methods. These analyses will allow us to identify primitives and regulatory interactions. We expect to identify new regulatory interactions and to understand the basic Dynamics of the regulatory network responsible for thorax patterning. These results will provide us with a better understanding of the rules governing gene regulatory networks in general, and provide the basis for future studies of the evolution of the thorax-patterning network in particular.
Resumo:
La demetilasa d’histones JMJD3 (Jumonji domain containing protein 3), és un enzim capaç de de demetilar específicament la lisina 27 a la histona 3 (H3K27), eliminant així una marca epigenètica relacionada amb la repressió transcripcional. Recentment s’ha descrit que està implicada en el manteniment de la pluripotència de les cèl•lules mare embrionàries (ESCs). A més, també s’ha demostrat el seu paper en la regulació de processos fisiològics d’inflamació, de reprogramació epigenètica i de diferenciació, així com en la progressió del càncer de colon. En aquesta línia, resultats previs del grup han demostrat que l’expressió de JMJD3 està regulada per TGFB, en línies cel•lulars derivades de glioma. Tenint en compte aquests antecedents, l’objectiu principal d’aquest projecte ha estat estudiar el paper principal de la JMJD3 en la regulació epigenètica de la progressió tumoral induïda per TGFB. Els nostres resultats demostren que l’expressió de JMD3 en cèl•lules A549, derivades d’un adenocarcinoma de pulmó, es veu fortament induïda després d’un tractament amb TGFB. Aquest augment es produeix ràpidament i es manté almenys 48 hores, temps en el que té lloc la transició epitelio-mesenquimal (EMT). Per tal d’estudiar el paper de la JMD3 en aquest procés de transdiferenciació, vam generar línies cel•lulars estables mitjançant la infecció amb vectors lentivirals que expressaven shRNAs específics contra la seva seqüència. El knockdown de JMJD3 va bloquejar significativament l’expressió de marcadors mesenquimals, tant a nivell RNA com de proteïna en presència de TGFB. Aquests resultats suggereixen que la demetilasa d’histones JMJD3 té un paper clau en la regulació de la EMT induïda per TGFB.
Resumo:
The Chlamydiales order includes the Chlamydiaceae, Parachlamydiaceae, Waddliaceae, Simkaniaceae, Criblamydiaceae, Rhabdochlamydiaceae, Clavichlamydiaceae, and Piscichlamydiaceae families. Members of the Chlamydiales order are obligate intracellular bacteria that replicate within eukaryotic cells of different origins including humans, animals, and amoebae. Many of these bacteria are pathogens or emerging pathogens of both humans and animals, but their true diversity is largely underestimated, and their ecology remains to be investigated. Considering their potential threat on human health, it is important to expand our knowledge on the diversity of Chlamydiae, but also to define the host range colonized by these bacteria. Thus, using a new pan-Chlamydiales PCR, we analyzed the prevalence of Chlamydiales DNA in ticks and fleas, which are important vectors of several viral and bacterial infectious diseases. To conduct this study, 1340 Ixodes ricinus ticks prepared in 192 pools were collected in Switzerland and 55 other ticks belonging to different tick species and 97 fleas belonging to different flea species were harvested in Algeria. In Switzerland, the prevalence of Chlamydiales DNA in the 192 pools was equal to 28.1% (54/192) which represents an estimated prevalence in the 1340 individual ticks of between 4.0% and 28.4%. The pan-Chlamydiales qPCR was positive for 45% (25/55) of tick samples collected in Algeria. The sequencing of the positive qPCR amplicons revealed a high diversity of Chlamydiales species. Most of them belonged to the Rhabdochlamydiaceae and Parachlamydiaceae families. Thus, ticks may carry Chlamydiales and should thus be considered as possible vectors for Chlamydiales propagation to both humans and animals.
Resumo:
The c-Jun N-terminal kinase (JNK) is critical for cell survival, differentiation, apoptosis and tumorigenesis. This signalling pathway requires the presence of the scaffold protein Islet-Brain1/c-Jun N-terminal kinase interacting protein-1 (IB1/JIP-1). Immunolabeling and in situ hybridisation of bladder sections showed that IB1/JIP-1 is expressed in urothelial cells. The functional role of IB1/JIP-1 in the urothelium was therefore studied in vivo in a model of complete rat bladder outlet obstruction. This parietal stress, which is due to urine retention, reduced the content of IB1/JIP-1 in urothelial cells and consequently induced a drastic increase in JNK activity and AP-1 binding activity. Using a viral gene transfer approach, the stress-induced activation of JNK was prevented by overexpressing IB1/JIP-1. Conversely, the JNK activity was increased in urothelial cells where the IB1/JIP-1 content was experimentally reduced using an antisense RNA strategy. Furthermore, JNK activation was found to be increased in non-stressed urothelial cells of heterozygous mice carrying a selective disruption of the IB1/JIP-1 gene. These data established that mechanical stress in urothelial cells in vivo induces a robust JNK activation as a consequence of regulated expression of the scaffold protein IB1/JIP-1. This result highlights a critical role for that scaffold protein in the homeostasis of the urothelium and unravels a new potential target to regulate the JNK pathway in this tissue.
Resumo:
Induced pluripotent stem (iPS) cells have generated keen interestdue to their potential use in regenerative medicine. They havebeen obtained from various cell types of both mice and humans byexogenous delivery of different combinations of Oct4, Sox2, Klf4,c-Myc, Nanog, and Lin28. The delivery of these transcription factorshas mostly entailed the use of integrating viral vectors (retrovirusesor lentiviruses), carrying the risk of both insertional mutagenesisand oncogenesis due to misexpression of these exogenousfactors. Therefore, obtaining iPS cells that do not carry integratedtransgene sequences is an important prerequisite for their eventualtherapeutic use. Here we report the generation of iPS cell linesfrom mouse embryonic fibroblasts with no evidence of integrationof the reprogramming vector in their genome, achieved by nucleofectionof a polycistronic construct coexpressing Oct4, Sox2, Klf4,and c-Myc
Resumo:
Purpose: Gene therapy of severe retinal dystrophies directly affecting photoreceptor is still a challenge in terms of clinical application. One of the main hurdles is to generate high transgene expression specifically in rods or cones. In the present study, we are investigating the possibility to drive hPDE6b expression in the Rd10 mouse retina using a specific sequence of the human PDE6b promoter. Methods: Two 5' flanking fragments of the human PDE6b gene: (-93 to +53 (146 bp) and -297 to +53 (350 bp, see Di Polo and Farber, 1995) were cloned in different plasmids in order to check their expression in vitro and in vivo. These elements drove the activity of either luciferase (pGL3 plasmids) or EGFP (AAV2/8 backbone). Then, an AAV2/8 vector carrying the PDE6b cDNA was tested with subretinal injections at P9 in the Rd10 eyes. Eye fundus, OCT, ERG recordings and histological investigations were performed to assess the efficacy of the gene transfer. Results: The short PDE6b promoter containing 146bp (-93 to +53) showed the highest activity in the Y-79 cells, as described previously (Di Polo and Farber, 1995). Subretinal administrations of AAV2/8-PDE6bpromoter-EGFP allowed a rapid expression specifically in rods and not in cones. The expression is faster than a vector containing the CMV promoter. The AAV2/8-PDE6bpromoter-PDE6b and the control vector were injected at P9 in the Rd10 mouse retina and investigated 5 weeks post-injection. Out of 14 eyes, 6 presented an increased rod sensitivity of about 300 fold, and increased a- and b-wave responses in ERG recordings. Flicker stimulations revealed that cones are also functional. OCT images and histological analyses revealed an increased ONL size in the injected area. The retina treated with the therapeutic vector presented 4-6 rows of photoreceptors with outersegments containing PDE6b. In the control eyes, only 2-4 rows of photoreceptors with almost no OS were observed . Conclusions: The 146 bp promoter sequence (-93 to + 53) is the shortest regulatory element described to date which allows to obtain efficient rod-specific expression in the context of somatic gene transfer. This first result is of great interest for AAV vector design in general allowing more space for the accommodation of transgenes of interest and good expression in rods. Moreover we showed the proof of principle of the efficacy of AAV2/8-PDE6bp-PDE6b vector in the Rd10 mouse model of severe photoreceptor degeneration without using neither AAV mutated capsids, nor self-complementary vectors.
Resumo:
A pool of oligonucleotides encoding a start methionine and nine random amino acids was inserted at the 5'-end of the gene for the yeast cytochrome oxidase subunit IV lacking its own mitochondrial targeting sequence. Approximately one-quarter of the randomly generated sequences targeted subunit IV to its correct intramitochondrial location in vivo. Sequence analysis of 89 randomly generated sequences showed that their efficiencies as mitochondrial targeting signals correlated with the potential to fold into an amphiphilic alpha-helix. Functional targeting sequences were enriched in arginine and isoleucine residues but contained few aspartate, glutamate, and proline residues. Nonfunctional sequences predicted to have significant helical amphiphilicity often had at least one acidic or multiple helix-breaking residues that would be expected to interfere with targeting functioning. These results support the hypothesis that the signal for targeting a protein into the mitochondrial matrix is usually a positively charged amphiphilic helix.
Resumo:
Cell-to-cell communication mediated by gap junctions made of Connexin36 (Cx36) contributes to pancreatic β-cell function. We have recently demonstrated that Cx36 also supports β-cell survival by a still unclear mechanism. Using specific Cx36 siRNAs or adenoviral vectors, we now show that Cx36 downregulation promotes apoptosis in INS-1E cells exposed to the pro-inflammatory cytokines (IL-1β, TNF-α and IFN-γ) involved at the onset of type 1 diabetes, whereas Cx36 overexpression protects against this effect. Cx36 overexpression also protects INS-1E cells against endoplasmic reticulum (ER) stress-mediated apoptosis, and alleviates the cytokine-induced production of reactive oxygen species, the depletion of the ER Ca(2+) stores, the CHOP overexpression and the degradation of the anti-apoptotic protein Bcl-2 and Mcl-1. We further show that cytokines activate the AMP-dependent protein kinase (AMPK) in a NO-dependent and ER-stress-dependent manner and that AMPK inhibits Cx36 expression. Altogether, the data suggest that Cx36 is involved in Ca(2+) homeostasis within the ER and that Cx36 expression is downregulated following ER stress and subsequent AMPK activation. As a result, cytokine-induced Cx36 downregulation elicits a positive feedback loop that amplifies ER stress and AMPK activation, leading to further Cx36 downregulation. The data reveal that Cx36 plays a central role in the oxidative stress and ER stress induced by cytokines and the subsequent regulation of AMPK activity, which in turn controls Cx36 expression and mitochondria-dependent apoptosis of insulin-producing cells.