981 resultados para TGF-[bêta]1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Zeeman effect of NQR was studied in 1-chloro-2,4-dinitrobenzene. A low value of the asymmetry parameter (0.10) was obtained. Four physically inequivalent field gradients were located and their orientations in the crystallographic abc system were determined using symmetry considerations. From these data the orientations of the molecules in the unit cell were determined. The results agree well with the two-dimensional x-ray structural data. The bond characters of the C[Single Bond]Cl bond were calculated, and the values compare well with those generally obtained for C[Single Bond]Cl bonds in chlorine derivatives of benzene. ©1973 The American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rat brain particulate fractions were shown to acylate [32P]1-alkyl-sn-glycero-3-phosphorylethanolamine (GPE). While the main product is 1-alkyl-2-acyl GPE, about 12 per cent of the radioactivity was also found in 1-alkenyl-2-acyl GPE. The acyl transferase activity was completely dependent on added ATP and CoA and it was localized mainly in the microsomal fraction. A comparative study of acyl transferase activities to 1-alkyl-, 1-alkenyl-, and 1-acyl GPE by crude mitochondrial fraction and microsomes of 10, 16 and 22-day-old rat brains showed a progressive increase in activity with development. In the 22-day-old rat brain the order of activity towards the three substrates is as follows: 1-acyl GPE ± 1-alkenyl GPE ± 1-alkyl GPE with a crude mitochondrial fraction and 1-acyl GPE ± 1-alkyl GPE ± 1-alkenyl GPE with microsomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C15HIoN404, monoclinic, P2~/c, a = 10.694(8), b = 11.743 (8), c - 12.658 (8) A, fl = 113.10 (7) °, V = 1462.1 A 3, Z = 4, O m = 1 "38, O c = 1.408 g cm -3, t,t(MoKa, ~, = 0.7107 ]~) = 0.99 cm -i, F(000) = 640. The structure was solved by direct methods and refined to an R value of 0.054 using 1398 intensity measurements. The relative magnitudes of interaction of the substituents and the extent to which a ring can accommodate interactions with substituents are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been demonstrated that most cells of the body respond to osmotic pressure in a systematic manner. The disruption of the collagen network in the early stages of osteoarthritis causes an increase in water content of cartilage which leads to a reduction of pericellular osmolality in chondrocytes distributed within the extracellular environment. It is therefore arguable that an insight into the mechanical properties of chondrocytes under varying osmotic pressure would provide a better understanding of chondrocyte mechanotransduction and potentially contribute to knowledge on cartilage degeneration. In this present study, the chondrocyte cells were exposed to solutions with different osmolality. Changes in their dimensions and mechanical properties were measured over time. Atomic Force Microscopy (AFM) was used to apply load at various strain-rates and the force-time curves were logged. The thin-layer elastic model was used to extract the elastic stiffness of chondrocytes at different strain-rates and at different solution osmolality. In addition, the porohyperelastic (PHE) model was used to investigate the strain-rate dependent responses under the loading and osmotic pressure conditions. The results revealed that the hypo-osmotic external environment increased chondrocyte dimensions and reduced Young’s modulus of the cells at all strain-rates tested. In contrast, the hyper-osmotic external environment reduced dimensions and increased Young’s modulus. Moreover, by using the PHE model coupled with inverse FEA simulation, we established that the hydraulic permeability of chondrocytes increased with decreasing extracellular osmolality which is consistent with previous work in the literature. This could be due to a higher intracellular fluid volume fraction with lower osmolality.