983 resultados para Specialized didactics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The functional networks of cultured neurons exhibit complex network properties similar to those found in vivo. Starting from random seeding, cultures undergo significant reorganization during the initial period in vitro, yet despite providing an ideal platform for observing developmental changes in neuronal connectivity, little is known about how a complex functional network evolves from isolated neurons. In the present study, evolution of functional connectivity was estimated from correlations of spontaneous activity. Network properties were quantified using complex measures from graph theory and used to compare cultures at different stages of development during the first 5 weeks in vitro. Networks obtained from young cultures (14 days in vitro) exhibited a random topology, which evolved to a small-world topology during maturation. The topology change was accompanied by an increased presence of highly connected areas (hubs) and network efficiency increased with age. The small-world topology balances integration of network areas with segregation of specialized processing units. The emergence of such network structure in cultured neurons, despite a lack of external input, points to complex intrinsic biological mechanisms. Moreover, the functional network of cultures at mature ages is efficient and highly suited to complex processing tasks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some—including the infamous ergot alkaloids—have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects, over periods from 3 days to 9 months of administration, of diets containing di-2-ethylhexyl phthalate are very similar to those observed in rats administered diets containing hypolipidemic drugs such as clofibrate. Changes occur in a characteristic order commencing with alterations in the distribution of lipid within the liver, quickly followed by proliferation of hepatic peroxisomes and induction of the specialized P-450 isoenzyme(s) catalyzing omega oxidation of fatty acids. There follows a phase of mild liver damage indicated by induction of glucose-6-phosphatase activity and a loss of glycogen, eventually leading to the formation of enlarged lysosomes through autophagy and the accumulation of lipofuscin. Associated changes are found in the kidney and thyroid. The renal changes are limited to the proximal convoluted tubules and are generally similar to changes found in the liver. The effects on the thyroid are more marked. Although the levels of thyroxine in plasma fail to about half normal values, serum triiodothyronine remains close to normal values while the appearance of the thyroid varies, very marked hyperactivity being noted 7 days after commencement of treatment, this is less marked at 14 days, but even after 9 months treatment there is clear cut evidence for hyperactivity with colloid changes which indicate this has persisted for some time. Straight chain analogs of di-2-ethylhexyl phthalate, di-n-hexyl phthalate and di-n-oxtyl phthalate differ entirely in their short-term effects on the liver and kidney but have similar effects on the thyroid. The short-term in vivo hepatic effects of the three phthalate esters can be reproduced in hepatocytes in tissue culture. All three phthalate esters, as well as clofibrate, have early marked effects on the metabolism of fatty acids in isolated hepatocytes. The nature of these changes is such as to increase storage of lipid in the liver. A hypothesis is presented to explain the progress from these initial metabolic effects to the final formation of liver tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, research into the impact of genetic abnormalities on cognitive development, including language, has become recognized for its potential to make valuable contributions to our understanding of the brain–behaviour relationships underlying language acquisition as well as to understanding the cognitive architecture of the human mind. The publication of Fodor’s ( 1983 ) book The Modularity of Mind has had a profound impact on the study of language and the cognitive architecture of the human mind. Its central claim is that many of the processes involved in comprehension are undertaken by special brain systems termed ‘modules’. This domain specificity of language or modularity has become a fundamental feature that differentiates competing theories and accounts of language acquisition (Fodor 1983 , 1985 ; Levy 1994 ; Karmiloff-Smith 1998 ). However, although the fact that the adult brain is modularized is hardly disputed, there are different views of how brain regions become specialized for specific functions. A question of some interest to theorists is whether the human brain is modularized from the outset (nativist view) or whether these distinct brain regions develop as a result of biological maturation and environmental input (neuroconstructivist view). One source of insight into these issues has been the study of developmental disorders, and in particular genetic syndromes, such as Williams syndrome (WS) and Down syndrome (DS). Because of their uneven profiles characterized by dissociations of different cognitive skills, these syndromes can help us address theoretically significant questions. Investigations into the linguistic and cognitive profiles of individuals with these genetic abnormalities have been used as evidence to advance theoretical views about innate modularity and the cognitive architecture of the human mind. The present chapter will be organized as follows. To begin, two different theoretical proposals in the modularity debate will be presented. Then studies of linguistic abilities in WS and in DS will be reviewed. Here, the emphasis will be mainly on WS due to the fact that theoretical debates have focused primarily on WS, there is a larger body of literature on WS, and DS subjects have typically been used for the purposes of comparison. Finally, the modularity debate will be revisited in light of the literature review of both WS and DS. Conclusions will be drawn regarding the contribution of these two genetic syndromes to the issue of cognitive modularity, and in particular innate modularity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Threat-relevant stimuli such as fear faces are prioritized by the human visual system. Recent research suggests that this prioritization begins during unconscious processing: A specialized (possibly subcortical) pathway evaluates the threat relevance of visual input, resulting in preferential access to awareness for threat stimuli. Our data challenge this claim. We used a continuous flash suppression (CFS) paradigm to present emotional face stimuli outside of awareness. It has been shown using CFS that salient (e.g., high contrast) and recognizable stimuli (faces, words) become visible more quickly than less salient or less recognizable stimuli. We found that although fearful faces emerge from suppression faster than other faces, this was wholly explained by their low-level visual properties, rather than their emotional content. We conclude that, in the competition for visual awareness, the visual system prefers and promotes unconscious stimuli that are more “face-like,” but the emotional content of a face has no effect on stimulus salience.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the process of development, neural crest cells migrate out from their niche between the newly formed ectoderm and the neural tube. Thereafter, they give rise not only to ectodermal cell types, but also to mesodermal cell types. Cell types with neural crest ancestry consequently comprise a number of specialized varieties, such as ectodermal neurons, melanocytes and Schwann cells, as well as mesodermal osteoblasts, adipocytes and smooth muscle cells. Numerous recent studies suggest that stem cells with a neural crest origin persist into adulthood, especially within the mammalian craniofacial compartment. This review discusses the sources of adult neural crest-derived stem cells (NCSCs) derived from the cranium, as well as their differentiation potential and expression of key stem cell markers. Furthermore, the expression of marker genes associated with embryonic stem cells and the issue of multi- versus pluripotency of adult NCSCs is reviewed. Stringent tests are proposed, which, if performed, are anticipated to clarify the issue of adult NCSC potency. Finally, current pre-clinical and clinical data are discussed in light of the clinical impact of adult NCSCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Meissner corpuscles and Merkel cell neurite complexes are highly specialized mechanoreceptors present in the hairy and glabrous skin, as well as in different types of mucosa. Several reports suggest that after injury, such as after nerve crush, freeze injury, or dissection of the nerve, they are able to regenerate, particularly including reinnervation and repopulation of the mechanoreceptors by Schwann cells. However, little is known about mammalian cells responsible for these regenerative processes. Here we review cellular origin of this plasticity in the light of newly described adult neural crest-derived stem cell populations. We also discuss further potential multipotent stem cell populations with the ability to regenerate disrupted innervation and to functionally recover the mechanoreceptors. These capabilities are discussed as in context to cellularly reprogrammed Schwann cells and tissue resident adult mesenchymal stem cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent investigations of the phenomenon of forgetting have been driven mostly by the development of a novel theoretical framework which places great emphasis on inhibitory control (Anderson, 2003; Anderson & Spellman, 1995; Bjork, 1989). Whereas traditional, interference-based theories consider forgetting to be a by-product of storing new information, the inhibitory framework postulates a specialized mechanism, or a group of mechanisms, that serves the function of ‘deactivating’ information which is currently irrelevant. This process of inhibiting currently irrelevant information is thought to have lasting consequences, affecting memory for the irrelevant information on subsequent tests. The active and functional perspective on forgetting embedded in the inhibitory framework opens new fields for examining the role of forgetting in cognitive functioning. Differences in the ability to inhibit irrelevant information have been postulated to play important roles in a range of clinical conditions (e.g., Soriano, Jiménez, Román, & Bajo, 2009; Storm & White, 2010) and the trajectory of cognitive development (e.g., Aslan & Bäuml, 2010) as well as contributing to individual differences in many other cognitive and social domains (Redick, Heitz, & Engle, 2007).