988 resultados para SHORTWAVE IRRADIANCE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyse the ability of CMIP3 and CMIP5 coupled ocean–atmosphere general circulation models (CGCMs) to simulate the tropical Pacific mean state and El Niño-Southern Oscillation (ENSO). The CMIP5 multi-model ensemble displays an encouraging 30 % reduction of the pervasive cold bias in the western Pacific, but no quantum leap in ENSO performance compared to CMIP3. CMIP3 and CMIP5 can thus be considered as one large ensemble (CMIP3 + CMIP5) for multi-model ENSO analysis. The too large diversity in CMIP3 ENSO amplitude is however reduced by a factor of two in CMIP5 and the ENSO life cycle (location of surface temperature anomalies, seasonal phase locking) is modestly improved. Other fundamental ENSO characteristics such as central Pacific precipitation anomalies however remain poorly represented. The sea surface temperature (SST)-latent heat flux feedback is slightly improved in the CMIP5 ensemble but the wind-SST feedback is still underestimated by 20–50 % and the shortwave-SST feedbacks remain underestimated by a factor of two. The improvement in ENSO amplitudes might therefore result from error compensations. The ability of CMIP models to simulate the SST-shortwave feedback, a major source of erroneous ENSO in CGCMs, is further detailed. In observations, this feedback is strongly nonlinear because the real atmosphere switches from subsident (positive feedback) to convective (negative feedback) regimes under the effect of seasonal and interannual variations. Only one-third of CMIP3 + CMIP5 models reproduce this regime shift, with the other models remaining locked in one of the two regimes. The modelled shortwave feedback nonlinearity increases with ENSO amplitude and the amplitude of this feedback in the spring strongly relates with the models ability to simulate ENSO phase locking. In a final stage, a subset of metrics is proposed in order to synthesize the ability of each CMIP3 and CMIP5 models to simulate ENSO main characteristics and key atmospheric feedbacks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of variations in land cover on mean radiant surface temperature (Tmrt) is explored through a simple scheme developed within the radiation model SOLWEIG. Outgoing longwave radiation is parameterised using surface temperature observations on a grass and an asphalt surface, whereas outgoing shortwave radiation is modelled through variations in albedo for the different surfaces. The influence of surface materials on Tmrt is small compared to the effects of shadowing. Nevertheless, altering ground surface materials could contribute to a reduction on Tmrt to reduce the radiant load during heat-wave episodes in locations where shadowing is not an option. Evaluation of the new scheme suggests that despite its simplicity it can simulate the outgoing fluxes well, especially during sunny conditions. However, it underestimates at night and in shadowed locations. One grass surface used to develop the parameterisation, with very different characteristics compared to an evaluation grass site, caused Tmrt to be underestimated. The implications of using high resolution (e.g. 15 minutes) temporal forcing data under partly cloudy conditions are demonstrated even for fairly proximal sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Building roofs play a very important role in the energy balance of buildings, especially in summer, when they are hit by a rather high solar irradiance. Depending on the type of finishing layer, roofs can absorb a great amount of heat and reach quite high temperatures on their outermost surface, which determines significant room overheating. However, the use of highly reflective cool materials can help to maintain low outer surface temperatures; this practice may improve indoor thermal comfort and reduce the cooling energy need during the hot season.This technology is currently well known and widely used in the USA, while receiving increasing attention in Europe. In order to investigate the effectiveness of cool roofs as a passive strategy for passive cooling in moderately hot climates, this paper presents the numerical results of a case study based on the dynamic thermal analysis of an existing office building in Catania (southern Italy, Mediterranean area). The results show how the application of a cool paint on the roof can enhance the thermal comfort of the occupants by reducing the operative temperatures of the rooms and to reduce the overall energy needs of the building for space heating and cooling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intensification of the Urban Heat Island effect (UHI) is a problem that involves several fields, and new adequate solutions are required to mitigate its amplitude. The construction sector is strictly related with this phenomenon; in particular, roofs are the envelope components subject to the highest solar irradiance, hence any mitigation strategy should start from them and involve their appropriate design process. For this purpose, cool materials, i.e. materials which are able to reflect a large amount of solar radiation and avoid overheating of building surfaces have been deeply analyzed in the last years both at building and urban scales, showing their benefits especially in hot climates. However, green roofs also represent a possible way to cope with UHI, even if their design is not straightforward and requires taking into account many variables, strictly related with the local climatic conditions. In this context, the present paper proposes a comparison between cool roofs and green roofs for several Italian cities that are representative of different climatic conditions. In search of the most effective solution, the answers may be different depending on the perspective that leads the comparison, i.e. the need to reduce the energy consumption in buildings or the desire to minimize the contribution of the UHI effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cool materials are characterized by high solar reflectance and high thermal emittance; when applied to the external surface of a roof, they make it possible to limit the amount of solar irradiance absorbed by the roof, and to increase the rate of heat flux emitted by irradiation to the environment, especially during nighttime. However, a roof also releases heat by convection on its external surface; this mechanism is not negligible, and an incorrect evaluation of its entity might introduce significant inaccuracy in the assessment of the thermal performance of a cool roof, in terms of surface temperature and rate of heat flux transferred to the indoors. This issue is particularly relevant in numerical simulations, which are essential in the design stage, therefore it deserves adequate attention. In the present paper, a review of the most common algorithms used for the calculation of the convective heat transfer coefficient due to wind on horizontal building surfaces is presented. Then, with reference to a case study in Italy, the simulated results are compared to the outcomes of a measurement campaign. Hence, the most appropriate algorithms for the convective coefficient are identified, and the errors deriving by an incorrect selection of this coefficient are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of two different coupled cirrus microphysics-radiation parameterizations on the zonally averaged temperature and humidity biases in the tropical tropopause layer (TTL) of a Met Office climate model configuration is assessed. One parameterization is based on a linear coupling between a model prognostic variable, the ice mass mixing ratio, qi, and the integral optical properties. The second is based on the integral optical properties being parameterized as functions of qi and temperature, Tc, where the mass coefficients (i.e. scattering and extinction) are parameterized as nonlinear functions of the ratio between qi and Tc. The cirrus microphysics parameterization is based on a moment estimation parameterization of the particle size distribution (PSD), which relates the mass moment (i.e. second moment if mass is proportional to size raised to the power of 2 ) of the PSD to all other PSD moments through the magnitude of the second moment and Tc. This same microphysics PSD parameterization is applied to calculate the integral optical properties used in both radiation parameterizations and, thus, ensures PSD and mass consistency between the cirrus microphysics and radiation schemes. In this paper, the temperature-non-dependent and temperature-dependent parameterizations are shown to increase and decrease the zonally averaged temperature biases in the TTL by about 1 K, respectively. The temperature-dependent radiation parameterization is further demonstrated to have a positive impact on the specific humidity biases in the TTL, as well as decreasing the shortwave and longwave biases in the cloudy radiative effect. The temperature-dependent radiation parameterization is shown to be more consistent with TTL and global radiation observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The seasonal evolution of daily and hourly values of global and diffuse solar radiation at the surface are compared for the cities of Sao Paulo and Botucatu, both located in Southeast Brazil and representative of urban and rural areas, respectively. The comparisons are based on measurements of global and diffuse solar irradiance carried out at the surface during a six year simultaneous period in these two cities. Despite the similar latitude and altitude, the seasonal evolution of daily values indicate that Sao Paulo receives, during clear sky days, 7.8% less global irradiance in August and 5.1% less in June than Botucatu. On the other hand, Sao Paulo receives, during clear sky days, 3.6% more diffuse irradiance in August and 15.6% more in June than Botucatu. The seasonal variation of the diurnal cycle confirms these differences and indicates that they are more pronounced during the afternoon. The regional differences are related to the distance from the Atlantic Ocean, systematic penetration of the sea breeze and daytime evolution of the particulate matter in Sao Paulo. An important mechanism controlling the spatial distribution of solar radiation, on a regional scale, is the sea breeze penetration in Sao Paulo, bringing moisture and maritime aerosol that in turn further increases the solar radiation scattering due to pollution and further reduces the intensity of the direct component of solar radiation at the surface. Surprisingly, under clear sky conditions the atmospheric attenuation of solar radiation in Botucatu during winter - the biomass burning period due to the sugar cane harvest - is equivalent to that at Sao Paulo City, indicating that the contamination during sugar cane harvest in Southeast Brazil has a large impact in the solar radiation field at the surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of UVB radiation on the different developmental stages of the carrageenan-producing red alga Iridaea cordata were evaluated considering: (1) carpospore and discoid germling mortality; (2) growth rates and morphology of young tetrasporophytes; and (3) growth rates and pigment content of field-collected plant fragments. Unialgal cultures were submitted to 0.17, 0.5, or 0.83 W m(-2) of UVB radiation for 3 h per day. The general culture conditions were as follows: 12 h light/12 h dark cycles; irradiance of 55 mu mol photon. per square meter per second; temperature of 9 +/- 1 degrees C; and seawater enriched with Provasoli solution. All UVB irradiation treatments were harmful to carpospores (0.17 W m(-2) = 40.9 +/- 6.9%, 0.5 W m(-2) = 59.8 +/- 13.4%, 0.83 W m(-2) = 49 +/- 17.4% mortality in 3 days). Even though the mortality of all discoid germlings exposed to UVB radiation was unchanged when compared to the control, those germlings exposed to 0.5 and 0.83 W m(-2) treatments became paler and had smaller diameters than those cultivated under control treatment. Decreases in growth rates were observed in young tetrasporophytes, mainly in 0.5 and 0.83 W m(-2) treatments. Similar effects were only observed in fragments of adult plants cultivated at 0.83 W m(-2). Additionally, UVB radiation caused morphological changes in fragments of adult plants in the first week, while the young individuals only displayed this pattern during the third week. The verified morphological alterations in I. cordata could be interpreted as a defense against UVB by reducing the area exposed to radiation. However, a high level of radiation appears to produce irreparable damage, especially under long-term exposure. Our results suggest that the sensitivity to ultraviolet radiation decreases with increased algal age and that the various developmental stages have different responses when exposed to the same doses of UVB radiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photodynamic therapy (PDT) is a combination of using a photosensitizer agent, light and oxygen that can cause oxidative cellular damage. This technique is applied in several cases, including for microbial control. The most extensively studied light sources for this purpose are lasers and LED-based systems. Few studies treat alternative light sources based PDT. Sources which present flexibility, portability and economic advantages are of great interest. In this study, we evaluated the in vitro feasibility for the use of chemiluminescence as a PDT light source to induce Staphylococcus aureus reduction. The Photogem (R) concentration varied from 0 to 75 mu g/ml and the illumination time varied from 60 min to 240 min. The long exposure time was necessary due to the low irradiance achieved with chemiluminescence reaction at mu W/cm(2) level. The results demonstrated an effective microbial reduction of around 98% for the highest photosensitizer concentration and light dose. These data suggest the potential use of chemiluminescence as a light source for PDT microbial control, with advantages in terms of flexibility, when compared with conventional sources. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photocatalytic performance of TiO(2)-SiMgO(x) ceramic plates for trichloroethylene abatement in gas phase has been evaluated under sun irradiance conditions. A continuous flow Pyrex glass reactor fixed on the focus of a compound parabolic collector has been used. The performance of the hybrid photocatalyst has been evaluated as the variation of TCE conversion and reaction products formation with the solar irradiance at different total gas flow, TCE concentration, and water vapour content. SiMgO(x) not only provides adsorbent properties to the photocatalyst, but it also allows the effective use of the material during low solar irradiance conditions. The adsorption-desorption phenomena play a pivotal role in the behaviour of the system. Thus, TCE conversion curves present two different branches when the sun irradiance increases (sunrise) or decreases (sunset). CO(2), COCl(2) and DCAC were the most relevant products detected. Meanwhile CO(2) concentration was insensitive to the branch analysed, COCl(2) or DCAC were not indicating the ability of these compounds to be adsorbed on the composite. An increase of the UV irradiation at total TCE conversion promotes the CO(2) selectivity. The excess of energy arriving to the reactor favours the direct reaction pathway to produce CO(2). The photonic efficiency, calculated as a function of the rate of CO(2) formation, decreases linearly with the solar irradiance up to around 2 mW cm(-2), where it becomes constant. For decontamination systems high TCE conversion is pursuit and then high solar irradiance values are required, in spite of lower photonic efficiency values. The present photocatalyst configuration, with only 17% of the reactor volume filled with the photoactive material, allows total TCE conversion for 150 ppm and 1 L min(-1) in a wide sun irradiance window from 2 to 4 mW cm(-2). The incorporation of water vapour leads to an increase of the CO(2) selectivity keeping the TCE conversion around 90%, although significant amounts of COCl(2) were observed. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years the number of bicycles with e-motors has been increased steadily. Within the pedelec – bikes where an e-motor supports the pedaling – a special group of transportation bikes has developed. These bikes have storage boxes in addition to the basic parts of a bike. Due to the space available on top of those boxes it is possible to install a PV system to generate electricity which could be used to recharge the battery of the pedelec. Such a system would lead to grid independent charging of the battery and to the possibility of an increased range of motor support. The feasibility of such a PV system is investigated for a three wheeled pedelec delivered by the company BABBOE NORDIC.The measured data of the electricity generation of this mobile system is compared to the possible electricity generation of a stationary system.To measure the consumption of the pedelec different tracks are covered, and the energy which is necessary to recharge the bike battery is measured using an energy logger. This recharge energy is used as an indirect measure of the electricity consumption. A PV prototype system is installed on the bike. It is a simple PV stand alone system consisting of PV panel, charge controller with MPP tracker and a solar battery. This system has the task to generate as much electricity as possible. The produced PV current and voltage aremeasured and documented using a data logger. Afterwards the average PV power is calculated. To compare the produced electricity of the on-bike system to that of a stationary system, the irradiance on the latter is measured simultaneously. Due to partial shadings on the on-bike PV panel, which are caused by the driver and some other bike parts, the average power output during riding the bike is very low. It is too low to support the motor directly. In case of a similar installation as the PV prototype system and the intention always to park the bike on a sunny spot an on-bike system could generate electricity to at least partly recharge a bike battery during one day. The stationary PV system using the same PV panel could have produced between 1.25 and 8.1 times as much as the on-bike PV system. Even though the investigation is done for a very specific case it can be concluded that anon-bike PV system, using similar components as in the investigation, is not feasible to recharge the battery of a pedelec in an appropriate manner. The biggest barrier is that partial shadings on the PV panel, which can be hardly avoided during operation and parking, result in a significant reduction of generated electricity. Also the installation of the on-bike PV system would lead to increased weight of the whole bike and the need for space which is reducing the storage capacity. To use solar energy for recharging a bike battery an indirect way is giving better results. In this case a stationary PV stand alone system is used which is located in a sunny spot without shadings and adjusted to use the maximum available solar energy. The battery of the bike is charged using the corresponding charger and an inverter which provides AC power using the captured solar energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photovoltaic Thermal/Hybrid collectors are an emerging technology that combines PV and solar thermal collectors by producing heat and electricity simultaneously. In this paper, the electrical performance evaluation of a low concentrating PVT collector was done through two testing parts: power comparison and performance ratio testing. For the performance ratio testing, it is required to identify and measure the factors affecting the performance ratio on a low concentrating PVT collector. Factors such as PV cell configuration, collector acceptance angle, flow rate, tracking the sun, temperature dependence and diffuse to irradiance ratio. Solarus low concentrating PVT collector V12 was tested at Dalarna University in Sweden using the electrical equipment at the solar laboratory. The PV testing has showed differences between the two receivers. Back2 was producing 1.8 energy output more than Back1 throughout the day. Front1 and Front2 were almost the same output performance. Performance tests showed that the cell configuration for Receiver2 with cells grouping (6- 32-32-6) has proved to have a better performance ratio when to it comes to minimizing the shading effect leading to more output power throughout the day because of lowering the mismatch losses. Different factors were measured and presented in this thesis in chapter 5. With the current design, it has been obtained a peak power at STC of 107W per receiver. The solar cells have an electrical efficiency of approximately 19% while the maximum measured electrical efficiency for the collector was approximately 18 % per active cell area, in addition to a temperature coefficient of -0.53%/ ˚C. Finally a recommendation was done to help Solarus AB to know how much the electrical performance is affected during variable ambient condition and be able to use the results for analyzing and introducing new modification if needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybrid Photovoltaic Thermal (PVT) collectors are an emerging technology that combines PV and solar thermal systems in a single solar collector producing heat and electricity simultaneously. The focus of this thesis work is to evaluate the performance of unglazed open loop PVT air system integrated on a garage roof in Borlänge. As it is thought to have a significant potential for preheating ventilation of the building and improving the PV modules electrical efficiency. The performance evaluation is important to optimize the cooling strategy of the collector in order to enhance its electrical efficiency and maximize the production of thermal energy. The evaluation process involves monitoring the electrical and thermal energies for a certain period of time and investigating the cooling effect on the performance through controlling the air mass flow provided by a variable speed fan connected to the collector by an air distribution duct. The distribution duct transfers the heated outlet air from the collector to inside the building. The PVT air collector consists of 34 Solibro CIGS type PV modules (115 Wp for each module) which are roof integrated and have replaced the traditional roof material. The collector is oriented toward the south-west with a tilt of 29 ᵒ. The collector consists of 17 parallel air ducts formed between the PV modules and the insulated roof surface. Each air duct has a depth of 0.05 m, length of 2.38 m and width of 2.38 m. The air ducts are connected to each other through holes. The monitoring system is based on using T-type thermocouples to measure the relevant temperatures, air sensor to measure the air mass flow. These parameters are needed to calculate the thermal energy. The monitoring system contains also voltage dividers to measure the PV modules voltage and shunt resistance to measure the PV current, and AC energy meters which are needed to calculate the produced electrical energy. All signals recorded from the thermocouples, voltage dividers and shunt resistances are connected to data loggers. The strategy of cooling in this work was based on switching the fan on, only when the difference between the air duct temperature (under the middle of top of PV column) and the room temperature becomes higher than 5 °C. This strategy was effective in term of avoiding high electrical consumption by the fan, and it is recommended for further development. The temperature difference of 5 °C is the minimum value to compensate the heat losses in the collecting duct and distribution duct. The PVT air collector has an area of (Ac=32 m2), and air mass flow of 0.002 kg/s m2. The nominal output power of the collector is 4 kWppv (34 CIGS modules with 115 Wppvfor each module). The collector produces thermal output energy of 6.88 kWth/day (0.21 kWth/m2 day) and an electrical output energy of 13.46 kWhel/day (0.42 kWhel/m2 day) with cooling case. The PVT air collector has a daily thermal energy yield of 1.72 kWhth/kWppv, and a daily PV electrical energy yield of 3.36 kWhel /kWppv. The fan energy requirement in this case was 0.18 kWh/day which is very small compared to the electrical energy generated by the PV collector. The obtained thermal efficiency was 8 % which is small compared to the results reported in literature for PVT air collectors. The small thermal efficiency was due to small operating air mass flow. Therefore, the study suggests increasing the air mass flow by a factor of 25. The electrical efficiency was fluctuating around 14 %, which is higher than the theoretical efficiency of the PV modules, and this discrepancy was due to the poor method of recording the solar irradiance in the location. Due to shading effect, it was better to use more than one pyranometer.