981 resultados para Rotational pasture
Resumo:
Important information about the Brazilian agribusiness, population and economy are presented in this paper, as well as details of beef production, market, industry and production system, to inform people involved in meat industry about details on demography, production, economy and production systems of a country that is the largest player in beef exports in the world and that uses, mostly, Bos indicus based bovine population, reared under pasture conditions, for meat production purposes. Herd size, genetic evaluation programs, quantity of beef produced and market is informed, with figures about the global and major players` production. Some discussion related to environmental concerns, methane emission and carbon fixation is also presented, as well as meat quality. Meat quality of fed animals is also compared with beef from animals that are raised in pasture conditions. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The determination of the amount of sample units that will compose the sample express the optimization of the workforce, and reduce errors inherent in the report of recommendation and evaluation of soil fertility. This study aimed to determine in three systems use and soil management, the numbers of units samples design, needed to form the composed sample, for evaluation of soil fertility. It was concluded that the number of sample units needed to compose the composed sample to determination the attributes of organic matter, pH, P, K, Ca, Mg, Al and H+Al and base saturation of soil vary by use and soil management and error acceptable to the mean estimate. For the same depth of collected, increasing the number of sample units, reduced the percentage error in estimating the average, allowing the recommendation of 14, 14 and 11 sample in management with native vegetation, pasture cultivation and corn, respectively, for a error 20% on the mean estimate.
Resumo:
We studied, for the first time, the near-infrared, stellar and baryonic Tully-Fisher relations for a sample of field galaxies taken from a homogeneous Fabry-Perot sample of galaxies [the Gassendi HAlpha survey of SPirals (GHASP) survey]. The main advantage of GHASP over other samples is that the maximum rotational velocities were estimated from 2D velocity fields, avoiding assumptions about the inclination and position angle of the galaxies. By combining these data with 2MASS photometry, optical colours, HI masses and different mass-to-light ratio estimators, we found a slope of 4.48 +/- 0.38 and 3.64 +/- 0.28 for the stellar and baryonic Tully-Fisher relation, respectively. We found that these values do not change significantly when different mass-to-light ratio recipes were used. We also point out, for the first time, that the rising rotation curves as well as asymmetric rotation curves show a larger dispersion in the Tully-Fisher relation than the flat ones or the symmetric ones. Using the baryonic mass and the optical radius of galaxies, we found that the surface baryonic mass density is almost constant for all the galaxies of this sample. In this study we also emphasize the presence of a break in the NIR Tully-Fisher relation at M(H,K) similar to -20 and we confirm that late-type galaxies present higher total-to-baryonic mass ratios than early-type spirals, suggesting that supernova feedback is actually an important issue in late-type spirals. Due to the well-defined sample selection criteria and the homogeneity of the data analysis, the Tully-Fisher relation for GHASP galaxies can be used as a reference for the study of this relation in other environments and at higher redshifts.
Resumo:
NGC 6908, an S0 galaxy situated in the direction of NGC 6907, was only recently recognized as a distinct galaxy, instead of only a part of NGC 6907. We present 21-cm radio synthesis observations obtained with the Giant Metrewave Radio Telescope (GMRT) and optical images and spectroscopy obtained with the Gemini-North telescope of this pair of interacting galaxies. From the radio observations, we obtained the velocity field and the H I column density map of the whole region containing the NGC 6907/8 pair, and by means of the Gemini multi-object spectroscopy we obtained high-quality photometric images and 5 angstrom resolution spectra sampling the two galaxies. By comparing the rotation curve of NGC 6907 obtained from the two opposite sides around the main kinematic axis, we were able to distinguish the normal rotational velocity field from the velocity components produced by the interaction between the two galaxies. Taking into account the rotational velocity of NGC 6907 and the velocity derived from the absorption lines for NGC 6908, we verified that the relative velocity between these systems is lower than 60 km s(-1). The emission lines observed in the direction of NGC 6908, not typical of S0 galaxies, have the same velocity expected for the NGC 6907 rotation curve. Some emission lines are superimposed on a broader absorption profile, which suggests that they were not formed in NGC 6908. Finally, the H I profile exhibits details of the interaction, showing three components: one for NGC 6908, another for the excited gas in the NGC 6907 disc and a last one for the gas with higher relative velocities left behind NGC 6908 by dynamical friction, used to estimate the time when the interaction started in (3.4 +/- 0.6) x 10(7) yr ago.
Resumo:
This report is a review of Darwin`s classical theory of bodily tides in which we present the analytical expressions for the orbital and rotational evolution of the bodies and for the energy dissipation rates due to their tidal interaction. General formulas are given which do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tidal waves (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the cases of companions having reached one of the two possible final states: (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) capture into the 1:1 spin-orbit resonance (true synchronization). In these cases, the energy dissipation is controlled by the tidal harmonic with period equal to the orbital period (instead of the semi-diurnal tide) and the singularity due to the vanishing of the geometric phase lag does not exist. It is also shown that the true synchronization with non-zero eccentricity is only possible if an extra torque exists opposite to the tidal torque. The theory is developed assuming that this additional torque is produced by an equatorial permanent asymmetry in the companion. The results are model-dependent and the theory is developed only to the second degree in eccentricity and inclination (obliquity). It can easily be extended to higher orders, but formal accuracy will not be a real improvement as long as the physics of the processes leading to tidal lags is not better known.
Resumo:
Based on our previous work, we investigate here the effects on the wind and magnetospheric structures of weak-lined T Tauri stars due to a misalignment between the axis of rotation of the star and its magnetic dipole moment vector. In such a configuration, the system loses the axisymmetry presented in the aligned case, requiring a fully three-dimensional (3D) approach. We perform 3D numerical magnetohydrodynamic simulations of stellar winds and study the effects caused by different model parameters, namely the misalignment angle theta(t), the stellar period of rotation, the plasma-beta, and the heating index.. Our simulations take into account the interplay between the wind and the stellar magnetic field during the time evolution. The system reaches a periodic behavior with the same rotational period of the star. We show that the magnetic field lines present an oscillatory pattern. Furthermore, we obtain that by increasing theta(t), the wind velocity increases, especially in the case of strong magnetic field and relatively rapid stellar rotation. Our 3D, time-dependent wind models allow us to study the interaction of a magnetized wind with a magnetized extrasolar planet. Such interaction gives rise to reconnection, generating electrons that propagate along the planet`s magnetic field lines and produce electron cyclotron radiation at radio wavelengths. The power released in the interaction depends on the planet`s magnetic field intensity, its orbital radius, and on the stellar wind local characteristics. We find that a close-in Jupiter-like planet orbiting at 0.05 AU presents a radio power that is similar to 5 orders of magnitude larger than the one observed in Jupiter, which suggests that the stellar wind from a young star has the potential to generate strong planetary radio emission that could be detected in the near future with LOFAR. This radio power varies according to the phase of rotation of the star. For three selected simulations, we find a variation of the radio power of a factor 1.3-3.7, depending on theta(t). Moreover, we extend the investigation done in Vidotto et al. and analyze whether winds from misaligned stellar magnetospheres could cause a significant effect on planetary migration. Compared to the aligned case, we show that the timescale tau(w) for an appreciable radial motion of the planet is shorter for larger misalignment angles. While for the aligned case tau(w) similar or equal to 100 Myr, for a stellar magnetosphere tilted by theta(t) = 30 degrees, tau(w) ranges from similar to 40 to 70 Myr for a planet located at a radius of 0.05 AU. Further reduction on tau(w) might occur for even larger misalignment angles and/or different wind parameters.