990 resultados para Reverse Power flows
Resumo:
Työssä vertaillaan kestomagneettitahtigeneraattorin kannattavuutta suhteessa perinteiseen erillismagnetoituun tahtigeneraattoriin. Sähkön markkinahinnan nousu tulevaisuudessa, pakottaa etsimään uusia ratkaisuja jo olemassa olevien vesivoimalaitosten hyötysuhteen parantamiseksi. Hyötysuhteeseen vaikuttavat laitoksen mekaaniset ja sähköiset häviöt. Työn kohteena olevan vesivoimalaitoksen saneeraus on ajankohtainen lähivuosina, ja samalla avautuu mahdollisuus vaihtaa myös vanha erillismagnetoitu tahtigeneraattori uudempaan kestomagneeteilla toteutettuun. Työssä tarkastellaan kalliimman investoinnin kannattavuutta suhteessa kasvavaan energian tuotantoon. Tarkastelujaksolla lisääntyneen vuosituotannon osuuden rahallista arvoa verrataan investointihetken kustannuksiin. Työn edetessä havaittiin, että virtaamamäärän lisäyksellä on vahva rooli kannattavuutta laskettaessa. Pienillä virtaamilla ei saavuteta riittävää tuottoa ilman mekaanisen hyötysuhteen parantamista. Pelkästään generaattorityypin vaihto ei tällä hetkellä kannata, kun nykyisellä generaattorilla on käyttöaikaa jäljellä kymmeniä vuosia. Tilanne voi muuttua kannattavaksi esimerkiksi äkillisen generaattorivaurion myötä.
Resumo:
The rapid economic growth in China has resulted in environmental challenges ranging from air pollution to water-related issues. Thus supporting clean technology, or cleantech, that encompasses industries that focus on alternative energy, pollution and recycling, power supplies and conservation has become one of the focal points in the Chinese economic policy for the next decade. Simultaneously, the Finnish government has initiated programs to support the internationalisation of domestic cleantech companies in an attempt to spiral the industry into one of the pillars of Finnish economic growth. This study concentrates on the conjunction of these two themes and studies the challenges faced by Finnish cleantech SMEs in the Chinese market. Consequently, the study answers the following sub questions: 1. What human and financial resource-based challenges do Finnish cleantech SMEs face in the Chinese market and what are their solutions? 2. What knowledge-based challenges do Finnish cleantech SMEs face in the Chinese market and how can these difficulties be resolved? 3. What network-based challenges do Finnish cleantech SMEs face in the Chinese market, how do they relate to the resource- and knowledge-based challenges, and how can these difficulties be resolved? This qualitative study is conducted by analysing four semi structured interviews collected from four Finnish SMEs that operate in China. The findings of the study indicate that in human resources the most important challenges are related to the hiring and retaining of employees. In contrast to extant academic literature results distinguish salary and social status as the main solutions to this challenge. Regarding financial resources it is discovered that cleantech companies enjoy a benign business environment in China and benefit from the Chinese government’s support for cleantech industry. Challenges related to knowledge resources can be grouped into categories with the most interesting knowledge flows being the stream of local market knowledge into to the foreign parent company and the outward flow of manufacturing and business practice information into the target venture. The challenge related to the first flow is gathering relevant information and the main solutions are clustering at the foreign location and hiring knowledge prior to internationalisation. Regarding the second flow the main challenge is related to intellectual property rights and the most interesting solution is the purposeful transformation of explicit knowledge into tacit knowledge. Finally, it is discovered that networks, called guanxi in China, greatly affect the business processes. Within the guanxi system there is the concept of face which was found to affect employee propensity to stay as well as, as a novel academic result, employees’ knowledge sharing intention.
Resumo:
Permanent magnet generators (PMG) represent the cutting edge technology in modern wind mills. The efficiency remains high (over 90%) at partial loads. To improve the machine efficiency even further, every aspect of machine losses has to be analyzed. Additional losses are often given as a certain percentage without providing any detailed information about the actual calculation process; meanwhile, there are many design-dependent losses that have an effect on the total amount of additional losses and that have to be taken into consideration. Additional losses are most often eddy current losses in different parts of the machine. These losses are usually difficult to calculate in the design process. In this doctoral thesis, some additional losses are identified and modeled. Further, suggestions on how to minimize the losses are given. Iron losses can differ significantly between the measured no-load values and the loss values under load. In addition, with embedded magnet rotors, the quadrature-axis armature reaction adds losses to the stator iron by manipulating the harmonic content of the flux. It was, therefore, re-evaluated that in salient pole machines, to minimize the losses and the loss difference between the no-load and load operation, the flux density has to be kept below 1.5 T in the stator yoke, which is the traditional guideline for machine designers. Eddy current losses may occur in the end-winding area and in the support structure of the machine, that is, in the finger plate and the clamping ring. With construction steel, these losses account for 0.08% of the input power of the machine. These losses can be reduced almost to zero by using nonmagnetic stainless steel. In addition, the machine housing may be subjected to eddy current losses if the flux density exceeds 1.5 T in the stator yoke. Winding losses can rise rapidly when high frequencies and 10–15 mm high conductors are used. In general, minimizing the winding losses is simple. For example, it can be done by dividing the conductor into transposed subconductors. However, this comes with the expense of an increase in the DC resistance. In the doctoral thesis, a new method is presented to minimize the winding losses by applying a litz wire with noninsulated strands. The construction is the same as in a normal litz wire but the insulation between the subconductors has been left out. The idea is that the connection is kept weak to prevent harmful eddy currents from flowing. Moreover, the analytical solution for calculating the AC resistance factor of the litz-wire is supplemented by including an end-winding resistance in the analytical solution. A simple measurement device is developed to measure the AC resistance in the windings. In the case of a litz-wire with originally noninsulated strands, vacuum pressure impregnation (VPI) is used to insulate the subconductors. In one of the two cases studied, the VPI affected the AC resistance factor, but in the other case, it did not have any effect. However, more research is needed to determine the effect of the VPI on litz-wire with noninsulated strands. An empirical model is developed to calculate the AC resistance factor of a single-layer formwound winding. The model includes the end-winding length and the number of strands and turns. The end winding includes the circulating current (eddy currents that are traveling through the whole winding between parallel strands) and the main current. The end-winding length also affects the total AC resistance factor.
Resumo:
This thesis presents a set of methods and models for estimation of iron and slag flows in the blast furnace hearth and taphole. The main focus was put on predicting taphole flow patterns and estimating the effects of various taphole conditions on the drainage behavior of the blast furnace hearth. All models were based on a general understanding of the typical tap cycle of an industrial blast furnace. Some of the models were evaluated on short-term process data from the reference furnace. A computational fluid dynamics (CFD) model was built and applied to simulate the complicated hearth flows and thus to predict the regions of the hearth exerted to erosion under various operating conditions. Key boundary variables of the CFD model were provided by a simplified drainage model based on the first principles. By examining the evolutions of liquid outflow rates measured from the furnace studied, the drainage model was improved to include the effects of taphole diameter and length. The estimated slag delays showed good agreement with the observed ones. The liquid flows in the taphole were further studied using two different models and the results of both models indicated that it is more likely that separated flow of iron and slag occurs in the taphole when the liquid outflow rates are comparable during tapping. The drainage process was simulated with an integrated model based on an overall balance analysis: The high in-furnace overpressure can compensate for the resistances induced by the liquid flows in the hearth and through the taphole. Finally, a recently developed multiphase CFD model including interfacial forces between immiscible liquids was developed and both the actual iron-slag system and a water-oil system in laboratory scale were simulated. The model was demonstrated to be a useful tool for simulating hearth flows for gaining understanding of the complex phenomena in the drainage of the blast furnace.
Resumo:
This work presents a new law of the wall formulation for recirculating turbulent flows. An alternative expression for the internal length which can be applied in the separated region is also presented. The formulation is implemented in a numerical code which solves the k-epsilon model through a finite volume method. The theoretical results are compared with the experimental data of Vogel and Eaton (J. of Heat Transfer, Transactions of ASME, vol.107, pp. 922-929, 1985). The paper shows that the present formulation furnishes better results than the standard k-epsilon formulation.
Resumo:
A non isotropic turbulence model is extended and applied to three dimensional stably stratified flows and dispersion calculations. The model is derived from the algebraic stress model (including wall proximity effects), but it retains the simplicity of the "eddy viscosity" concept of first order models. The "modified k-epsilon" is implemented in a three dimensional numerical code. Once the flow is resolved, the predicted velocity and turbulence fields are interpolated into a second grid and used to solve the concentration equation. To evaluate the model, various steady state numerical solutions are compared with small scale dispersion experiments which were conducted at the wind tunnel of Mitsubishi Heavy Industries, in Japan. Stably stratified flows and plume dispersion over three distinct idealized complex topographies (flat and hilly terrain) are studied. Vertical profiles of velocity and pollutant concentration are shown and discussed. Also, comparisons are made against the results obtained with the standard k-epsilon model.
Resumo:
Fuel elements of PWR type nuclear reactors consist of rod bundles, arranged in a square array, and held by spacer grids. The coolant flows, mainly, axially along the rods. Although such elements are laterally open, experiments are performed in closed type test sections, originating the appearance of subchannels with different geometries. In the present work, utilizing a test section of two bundles of 4x4 pins each, experiments were performed to determine the friction and the grid drag coefficients for the different subchannels and to observe the effect of the grids in the crossflow, in cases of inlet flow maldistribution.
Resumo:
The flow of Bingham liquids through porous media has been studied. Experiments have been performed to determine the flow rate / pressure drop relationship for the flow of a grease of Binghamian rheological behavior through an array of rods of circular cross section. The yield stress and plastic viscosity of the grease have been determined with the aid of a controlled stress rotational rheometer. To investigate a wider range of the flow parameters, the mass and momentum conservation equations have been solved numerically, in conjunction with the generalized Newtonian constitutive law and the bi-viscosity model. The finite volume method has been employed to obtain the numerical solution. These numerical results also yielded a flow rate / pressure drop relationship, which is in very good agreement with the experimental results. A capillaric theory has been developed to determine an analytical relationship between the flow rate and pressure drop for flows of Bingham liquids through porous media. It is shown that the predictions of this theory are in good agreement with the experimental and numerical results.
Resumo:
The present work shows how thick boundary layers can be produced in a short wind tunnel with a view to simulate atmospheric flows. Several types of thickening devices are analysed. The experimental assessment of the devices was conducted by considering integral properties of the flow and the spectra: skin-friction, mean velocity profiles in inner and outer co-ordinates and longitudinal turbulence. Designs based on screens, elliptic wedge generators, and cylindrical rod generators are analysed. The paper describes in detail the experimental arrangement, including the features of the wind tunnel and of the instrumentation. The results are compared with experimental data published by other authors and with naturally developed flows.
Resumo:
Wind power is a low-carbon energy production form that reduces the dependence of society on fossil fuels. Finland has adopted wind energy production into its climate change mitigation policy, and that has lead to changes in legislation, guidelines, regional wind power areas allocation and establishing a feed-in tariff. Wind power production has indeed boosted in Finland after two decades of relatively slow growth, for instance from 2010 to 2011 wind energy production increased with 64 %, but there is still a long way to the national goal of 6 TWh by 2020. This thesis introduces a GIS-based decision-support methodology for the preliminary identification of suitable areas for wind energy production including estimation of their level of risk. The goal of this study was to define the least risky places for wind energy development within Kemiönsaari municipality in Southwest Finland. Spatial multicriteria decision analysis (SMCDA) has been used for searching suitable wind power areas along with many other location-allocation problems. SMCDA scrutinizes complex ill-structured decision problems in GIS environment using constraints and evaluation criteria, which are aggregated using weighted linear combination (WLC). Weights for the evaluation criteria were acquired using analytic hierarchy process (AHP) with nine expert interviews. Subsequently, feasible alternatives were ranked in order to provide a recommendation and finally, a sensitivity analysis was conducted for the determination of recommendation robustness. The first study aim was to scrutinize the suitability and necessity of existing data for this SMCDA study. Most of the available data sets were of sufficient resolution and quality. Input data necessity was evaluated qualitatively for each data set based on e.g. constraint coverage and attribute weights. Attribute quality was estimated mainly qualitatively by attribute comprehensiveness, operationality, measurability, completeness, decomposability, minimality and redundancy. The most significant quality issue was redundancy as interdependencies are not tolerated by WLC and AHP does not include measures to detect them. The third aim was to define the least risky areas for wind power development within the study area. The two highest ranking areas were Nordanå-Lövböle and Påvalsby followed by Helgeboda, Degerdal, Pungböle, Björkboda, and Östanå-Labböle. The fourth aim was to assess the recommendation reliability, and the top-ranking two areas proved robust whereas the other ones were more sensitive.
Resumo:
TVO suunnittelee reaktoritehon 10 %:n korotusta Olkiluoto 1 ja 2 -voimalaitoksille. Reaktoriteho nostetaan 2500 MW:sta 2750 MW:iin polttoaineen rikastusastetta nostamalla ja pääkiertovirtausta kasvattamalla. Samalla syöttövesivirtaus reaktoriin ja tuorehöyryvirtaus turpiineille kasvaa. Lauhteenpuhdistusjärjestelmän kapasiteettia ei voida kuitenkaan kasvattaa, joten massavirran lisäys toteutetaan ottamalla käyttöön korkeapainesivulauhteen eteenpäinpumppaus. Lauhteen esilämmityslinjojen, lauhteenpuhdistuksen ja syöttövesipumppujen massavirta säilyy siten nykyisellään. Muita merkittäviä tehonkorotukseen liittyviä laitosmuutoksia ovat pääkiertopumppujen uusinta ja korkeapaineturpiinin muutokset. Tehonkorotetun prosessin käytettävyyden varmistamiseksi tehdään häiriöanalyysejä Apros-prosessisimulointiohjelmistoa käyttäen. OL1 ja OL2 -laitoksista on olemassa validoitu 2500 MW:n laitosmalli, josta muokatulla 2750 MW:n laitosmallilla simuloinnit tehdään. Häiriöanalyysien avulla selvitetään säätöjärjestelmien kyky pitää prosessin tila hallinnassa ilman suojausautomaation laukeamista. Simuloituihin tapauksiin kuuluu pumppujen ja venttiilien vikaantumistapauksia sekä turpiini- ja reaktoripuolen pikasulku- ja osittaispikasulkutapauksia. Myös meriveden lämpötilan vaikutusta häiriötilanteisiin tarkastellaan. Analyysien perusteella voimalaitosten ohjaus- ja suojausautomaatio toimivat hyvin myös korotetulla teholla. Tehonkorotuksen jälkeiset suuremmat massavirrat aiheuttavat kuitenkin voimakkaampia reaktoripaineen ja -tehon vaihteluita varsinkin venttiilien sulkeutumistapauksissa. Simuloinnit osoittivat, että tehonkorotus 2500 MW:sta 2750 MW:iin on mahdollinen, mutta aiheuttaa pieniä muutoksia laitoksen suojausjärjestelmien laukaisurajoihin.
Resumo:
The purpose of this thesis is to identify the Performance Determinants (PD) of Renewable Energy (RE) companies. It analyzes the background of the RE industry while reflecting simultaneous developments in the fossil based industries. I divided the determinants into two groups: market level and firm level and established hypotheses based on the existing literature. Data from public companies was gathered to construct a Panel Data structure. This is then tested by using a Linear Regression with Fixed Effects model. The model specification was efficient at reflecting the analyzed phenomena. My results showed that both market level and firm level determinants are significant in the RE Industry but the firm level determinants had higher explanatory power (R2). The determinants' relationships were found to follow those from the manufacturing industry more than the utilities' industry. Out of the market level determinants Consumer Price Index (CPI), Interest Rates and Oil prices were significant. Out of the firm level determinants Debt to Assets, Net Investments, Cash flows from operations, Sales and Earnings Before Interests and Taxes (EBIT) were significant. I concluded that this information is valuable for key industry players as they can achieve their objectives faster by elaborating better strategies using these results.
Resumo:
Communications play a key role in modern smart grids. New functionalities that make the grids ‘smart’ require the communication network to function properly. Data transmission between intelligent electric devices (IEDs) in the rectifier and the customer-end inverters (CEIs) used for power conversion is also required in the smart grid concept of the low-voltage direct current (LVDC) distribution network. Smart grid applications, such as smart metering, demand side management (DSM), and grid protection applied with communications are all installed in the LVDC system. Thus, besides remote connection to the databases of the grid operators, a local communication network in the LVDC network is needed. One solution applied to implement the communication medium in power distribution grids is power line communication (PLC). There are power cables in the distribution grids, and hence, they may be applied as a communication channel for the distribution-level data. This doctoral thesis proposes an IP-based high-frequency (HF) band PLC data transmission concept for the LVDC network. A general method to implement the Ethernet-based PLC concept between the public distribution rectifier and the customerend inverters in the LVDC grid is introduced. Low-voltage cables are studied as the communication channel in the frequency band of 100 kHz–30 MHz. The communication channel characteristics and the noise in the channel are described. All individual components in the channel are presented in detail, and a channel model, comprising models for each channel component is developed and verified by measurements. The channel noise is also studied by measurements. Theoretical signalto- noise ratio (SNR) and channel capacity analyses and practical data transmission tests are carried out to evaluate the applicability of the PLC concept against the requirements set by the smart grid applications in the LVDC system. The main results concerning the applicability of the PLC concept and its limitations are presented, and suggestion for future research proposed.
Resumo:
Global challenges, complexity and continuous uncertainty demand development of leadership approaches, employees and multi-organisation constellations. Current leadership theories do not sufficiently address the needs of complex business environments. First of all, before successful leadership models can be applied in practice, leadership needs to shift from the industrial age to the knowledge era. Many leadership models still view leadership solely through the perspective of linear process thinking. In addition, there is not enough knowledge or experience in applying these newer models in practice. Leadership theories continue to be based on the assumption that leaders possess or have access to all the relevant knowledge and capabilities to decide future directions without external advice. In many companies, however, the workforce consists of skilled professionals whose work and related interfaces are so challenging that the leaders cannot grasp all the linked viewpoints and cross-impacts alone. One of the main objectives of this study is to understand how to support participants in organisations and their stakeholders to, through practice-based innovation processes, confront various environments. Another aim is to find effective ways of recognising and reacting to diverse contexts, so companies and other stakeholders are better able to link to knowledge flows and shared value creation processes in advancing joint value to their customers. The main research question of this dissertation is, then, to seek understanding of how to enhance leadership in complex environments. The dissertation can, on the whole, be characterised as a qualitative multiple-case study. The research questions and objectives were investigated through six studies published in international scientific journals. The main methods applied were interviews, action research and a survey. The empirical focus was on Finnish companies, and the research questions were examined in various organisations at the top levels (leaders and managers) and bottom levels (employees) in the context of collaboration between organisations and cooperation between case companies and their client organisations. However, the emphasis of the analysis is the internal and external aspects of organisations, which are conducted in practice-based innovation processes. The results of this study suggest that the Cynefin framework, complexity leadership theory and transformational leadership represent theoretical models applicable to developing leadership through practice-based innovation. In and of themselves, they all support confronting contemporary challenges, but an implementable method for organisations may be constructed by assimilating them into practice-based innovation processes. Recognition of diverse environments, their various contexts and roles in the activities and collaboration of organisations and their interest groups is ever-more important to achieving better interaction in which a strategic or formal status may be bypassed. In innovation processes, it is not necessarily the leader who is in possession of the essential knowledge; thus, it is the role of leadership to offer methods and arenas where different actors may generate advances. Enabling and supporting continuous interaction and integrated knowledge flows is of crucial importance, to achieve emergence of innovations in the activities of organisations and various forms of collaboration. The main contribution of this dissertation relates to applying these new conceptual models in practice. Empirical evidence on the relevance of different leadership roles in practice-based innovation processes in Finnish companies is another valuable contribution. Finally, the dissertation sheds light on the significance of combining complexity science with leadership and innovation theories in research.