999 resultados para Real Fábrica de Paños de Segovia.
Resumo:
Real-time studies of the dynamics were performed on the reaction of HgI_2 in a molecular beam. Excitation was by either one or multi pump photons (311 nm), leading to two separate sets of dynamics, each of which could be investigated by a time-delayed probe laser (622 nm) that ionized the parent molecule and the fragments by REMPI processes. These dynamics were distinguished by combining the information from transients taken at each mass (HgI_2, HgI, I_2, Hg, and I) with the results of pump (and probe) power dependence studies on each mass. A method of plotting the slope of the intensity dependence against the pump-probe time delay proved essential. In the preceding publication, we detailed the dynamics of the reaction initiated by a one photon excitation to the A-continuum. Here, we present studies of higher-energy states. Multiphoton excitation accesses predissociative states of HgI_2, for which there are crossings into the symmetric and asymmetric stretch coordinates. The dynamics of these channels, which lead to atomic (I or Hg) and diatomic (HgI) fragments, are discussed and related to the nature of the intermediates along the reaction pathway.
Resumo:
Femtosecond reaction dynamics of OClO in a supersonic molecular beam are reported. The system is excited to the A^2A_2 state with a femtosecond pulse, covering a range of excitation in the symmetric stretch between v_1 = 17 to v_1 = 11 (308-352 nm). A time-delayed femtosecond probe pulse ionizes the OClO, and OClO^+ is detected. This ion has not been observed in previous experiments because of its ultrafast fragmentation. Transients are reported for the mass of the parent OClO as well as the mass of the ClO. Apparent biexponential decays are observed and related to the fragmentation dynamics: OClO+hv \rightarrow (OClO)^{(++)*} \rightarrow ClO+O \rightarrow Cl+O_2. Clusters of OClO with water (OClO)_n (H_2 0)_m with n from 1 to 3 and m from 0 to 3 are also observed. The dynamics of the fragmentation reveal the nuclear motions and the electronic coupling between surfaces. The time scale for bond breakage is in the range of 300-500 fs, depending on v_1; surface crossing to form new intermediates is a pathway for the two channels of fragmentation: ClO+O (primary) and Cl+O_2 (minor). Comparisons with results of ab initio calculations are made.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.
Resumo:
Resumen tomado de la publicación
Resumo:
Atender al alumnado inmigrante de procedencia latinoamericana que, al no ser la lengua un problema, no se está abordando ni estudiando otras dificultades que estos alumnos-as deben superar.
Resumo:
Se presenta memoria final de proyecto educativo que trata de acercar al alumnado del centro, y por extensión de toda la localidad y la comarca, a una realidad en la que ya vienen trabajando en los diez últimos cursos: la educación medioambiental. Se pretende aprovechar la experiencia y el gran trabajo realizado cursos pasados para editarlos en soportes relacionados con las nuevas tecnologías. Se realiza en el CEIP El Trocadero de Puerto Real, Cádiz y se trata de diseñar una serie de itinerarios ecológicos por las zonas verdes y espacios naturales de la zona de Puerto Real. Los objetivos son: respeto por la naturaleza y del entorno más cercano gracias a su conocimiento; aprendizaje de técnicas de observación directa del entorno inmediato; utilización de las TICs para alumnado y profesorado. El proceso consta de varias fases: visita de itinerarios para la elección de los posibles recursos; elaboración de soportes tanto fotográficos como video; realización de reuniones periódicas para trabajar boceto de presentación; visionado de los diferentes soportes que permanecían en el centro; dar cuerpo a la primera ruta. Los resultados han sido: elaboración y digitalización de todas las fichas de plantas propuestas; se han elaborado, limpiado, seleccionado y digitalizado las distintas láminas y dibujos de animales y plantas de la zona; se confeccionan los distintos planos y rutas a desarrollar para luego digitalizarlos; se recopilaron, clasificaron y ordenaron las distintas imágenes obtenidas en salidas y en material específico del centro; todos los temas tratados se han informatizado.
Resumo:
En anexo figura una relación de vídeos, un guión para diseñar proyectos de sensibilización, un glosario y las páginas web de interés
Resumo:
La obra cuenta con el discurso de contestación del Académico de Número de la Real Academia de Medicina y Cirugía de Murcia D. Guzmán Ortuño Pacheco
Resumo:
Subrayar el papel que a Jovellanos le tocó desempeñar en la transformación de la Escuela Nacional. Pensamiento pedagógico y principales teorías y hechos realizados por Jovellanos. Recorrido sobre las obras realizadas por Jovellanos. Reforma de los estudios del Colegio de Calatrava, creación del Real Instituto Asturiano y reflexión sobre algunas de las ideas del mismo con respecto a temas como la Nación ilustrada, las Humanidades, la educación pública, la felicidad, etc. Documentos, discursos, oraciones, apuntes de cursos, diarios, artículos y otra bibliografía. Son muchos los escritos de Jovellanos sobre educación pública, de la cual era un acérrimo defensor ya que creía que en ella residía el poder y bienestar de una nación. De esa forma se puede decir que en su obra 'bases para la formación de un Plan General de Instrucción Pública' (1804), están en germen todas las reformas del siglo XIX. Con él desaparecen muchos de los defectos de la Universidad española, sus aulas se abren a los vientos de fuera y nace un concepto nuevo de la Enseñanza, el analfabetismo empieza a disminuir y los gobiernos a preocuparse de las masas, las ciencias útiles ocupan el lugar destacado que les correspondía. Fue uno de los reformadores más importantes de su época, uno de los que poseía una teoría más meditada, a parte de ser ya una consecuencia de ella. Fomentó el estudio de las Humanidades, cambiando los métodos de enseñanza de las mismas proponiendo uno basado en un concepto de la enseñanza de la Lengua y la Literatura totalmente moderno. Su mas gloriosa creación como pedagogo es el Real Instituto Asturiano de Naútica y Mineralogía (1794), en el cual se formarían especialistas con base teórica en determinadas actividades económicas. Este Instituto tuvo muchas oposiciones por parte de la Universidad y el Ayuntamiento de Oviedo, pero con él empiezan a abrirse camino las verdaderas ideas de Jovellanos. También es de destacar la reforma que realizó de los estudios del Colegio de Calatrava.
Resumo:
Humans distinguish materials such as metal, plastic, and paper effortlessly at a glance. Traditional computer vision systems cannot solve this problem at all. Recognizing surface reflectance properties from a single photograph is difficult because the observed image depends heavily on the amount of light incident from every direction. A mirrored sphere, for example, produces a different image in every environment. To make matters worse, two surfaces with different reflectance properties could produce identical images. The mirrored sphere simply reflects its surroundings, so in the right artificial setting, it could mimic the appearance of a matte ping-pong ball. Yet, humans possess an intuitive sense of what materials typically "look like" in the real world. This thesis develops computational algorithms with a similar ability to recognize reflectance properties from photographs under unknown, real-world illumination conditions. Real-world illumination is complex, with light typically incident on a surface from every direction. We find, however, that real-world illumination patterns are not arbitrary. They exhibit highly predictable spatial structure, which we describe largely in the wavelet domain. Although they differ in several respects from the typical photographs, illumination patterns share much of the regularity described in the natural image statistics literature. These properties of real-world illumination lead to predictable image statistics for a surface with given reflectance properties. We construct a system that classifies a surface according to its reflectance from a single photograph under unknown illuminination. Our algorithm learns relationships between surface reflectance and certain statistics computed from the observed image. Like the human visual system, we solve the otherwise underconstrained inverse problem of reflectance estimation by taking advantage of the statistical regularity of illumination. For surfaces with homogeneous reflectance properties and known geometry, our system rivals human performance.
Resumo:
As exploration of our solar system and outerspace move into the future, spacecraft are being developed to venture on increasingly challenging missions with bold objectives. The spacecraft tasked with completing these missions are becoming progressively more complex. This increases the potential for mission failure due to hardware malfunctions and unexpected spacecraft behavior. A solution to this problem lies in the development of an advanced fault management system. Fault management enables spacecraft to respond to failures and take repair actions so that it may continue its mission. The two main approaches developed for spacecraft fault management have been rule-based and model-based systems. Rules map sensor information to system behaviors, thus achieving fast response times, and making the actions of the fault management system explicit. These rules are developed by having a human reason through the interactions between spacecraft components. This process is limited by the number of interactions a human can reason about correctly. In the model-based approach, the human provides component models, and the fault management system reasons automatically about system wide interactions and complex fault combinations. This approach improves correctness, and makes explicit the underlying system models, whereas these are implicit in the rule-based approach. We propose a fault detection engine, Compiled Mode Estimation (CME) that unifies the strengths of the rule-based and model-based approaches. CME uses a compiled model to determine spacecraft behavior more accurately. Reasoning related to fault detection is compiled in an off-line process into a set of concurrent, localized diagnostic rules. These are then combined on-line along with sensor information to reconstruct the diagnosis of the system. These rules enable a human to inspect the diagnostic consequences of CME. Additionally, CME is capable of reasoning through component interactions automatically and still provide fast and correct responses. The implementation of this engine has been tested against the NEAR spacecraft advanced rule-based system, resulting in detection of failures beyond that of the rules. This evolution in fault detection will enable future missions to explore the furthest reaches of the solar system without the burden of human intervention to repair failed components.
Resumo:
In this report, a face recognition system that is capable of detecting and recognizing frontal and rotated faces was developed. Two face recognition methods focusing on the aspect of pose invariance are presented and evaluated - the whole face approach and the component-based approach. The main challenge of this project is to develop a system that is able to identify faces under different viewing angles in realtime. The development of such a system will enhance the capability and robustness of current face recognition technology. The whole-face approach recognizes faces by classifying a single feature vector consisting of the gray values of the whole face image. The component-based approach first locates the facial components and extracts them. These components are normalized and combined into a single feature vector for classification. The Support Vector Machine (SVM) is used as the classifier for both approaches. Extensive tests with respect to the robustness against pose changes are performed on a database that includes faces rotated up to about 40 degrees in depth. The component-based approach clearly outperforms the whole-face approach on all tests. Although this approach isproven to be more reliable, it is still too slow for real-time applications. That is the reason why a real-time face recognition system using the whole-face approach is implemented to recognize people in color video sequences.
Resumo:
This paper describes a trainable system capable of tracking faces and facialsfeatures like eyes and nostrils and estimating basic mouth features such as sdegrees of openness and smile in real time. In developing this system, we have addressed the twin issues of image representation and algorithms for learning. We have used the invariance properties of image representations based on Haar wavelets to robustly capture various facial features. Similarly, unlike previous approaches this system is entirely trained using examples and does not rely on a priori (hand-crafted) models of facial features based on optical flow or facial musculature. The system works in several stages that begin with face detection, followed by localization of facial features and estimation of mouth parameters. Each of these stages is formulated as a problem in supervised learning from examples. We apply the new and robust technique of support vector machines (SVM) for classification in the stage of skin segmentation, face detection and eye detection. Estimation of mouth parameters is modeled as a regression from a sparse subset of coefficients (basis functions) of an overcomplete dictionary of Haar wavelets.
Resumo:
Testing constraints for real-time systems are usually verified through the satisfiability of propositional formulae. In this paper, we propose an alternative where the verification of timing constraints can be done by counting the number of truth assignments instead of boolean satisfiability. This number can also tell us how “far away” is a given specification from satisfying its safety assertion. Furthermore, specifications and safety assertions are often modified in an incremental fashion, where problematic bugs are fixed one at a time. To support this development, we propose an incremental algorithm for counting satisfiability. Our proposed incremental algorithm is optimal as no unnecessary nodes are created during each counting. This works for the class of path RTL. To illustrate this application, we show how incremental satisfiability counting can be applied to a well-known rail-road crossing example, particularly when its specification is still being refined.
Resumo:
At the time of a customer order, the e-tailer assigns the order to one or more of its order fulfillment centers, and/or to drop shippers, so as to minimize procurement and transportation costs, based on the available current information. However this assignment is necessarily myopic as it cannot account for all future events, such as subsequent customer orders or inventory replenishments. We examine the potential benefits from periodically re-evaluating these real-time order-assignment decisions. We construct near-optimal heuristics for the re-assignment for a large set of customer orders with the objective to minimize the total number of shipments. We investigate how best to implement these heuristics for a rolling horizon, and discuss the effect of demand correlation, customer order size, and the number of customer orders on the nature of the heuristics. Finally, we present potential saving opportunities by testing the heuristics on sets of order data from a major e-tailer.