984 resultados para Pyruvic acid derivative
Resumo:
The role of serum uric acid (SUA) in cardio-metabolic conditions has long been contentious. It is still unclear if SUA is an independent risk factor or marker of cardio-metabolic conditions and most observed associations are not necessarily causal. This study aimed to further understand and explore the causal role of SUA in cardio-metabolic conditions using genetic and non-genetic epidemiological methods in population-based data. In the first part of this study, we found moderate to high heritability estimates for SUA and fractional excretion of urate (FEUA) suggesting the role of genetic factors in the etiology of hyperuricemia. With regards to the role of SUA on inflammatory markers (IMs), a strong positive association of SUA with C-reactive protein (CRP) and a weaker positive association with tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) was observed, which was in part mediated by body mass index (BMI). These findings suggest that SUA may have a role in sterile inflammation. In view of the inconsistency surrounding the causal nature and direction of the relation between SUA and adiposity, we applied a bidirectional Mendelian randomization approach using genetic variants to decipher the association. The finding that elevated SUA is a consequence rather than a cause of adiposity was not totally unexpected and is compatible with the hypothesis that hyperinsulinemia, accompanying obesity, enhances renal proximal tubular reabsorption of uric acid. The fourth part of this study examined the relationship between SUA and blood pressure (BP) in young adults. The association between SUA and BP, significant only in females, was strongly attenuated upon adjustment for BMI. The possibility that BMI lies in the causal pathway may explain the attenuation observed in the associations of SUA with BP and IMs. Finally, a significant hockey-stick shaped association of SUA with social phobia in our data suggests a protective effect of SUA only up to a certain concentration. Although our study findings have shed some light on the uncertainty underlying the pathophysiology of SUA, more compelling evidence using longitudinal designs, randomized controlled trials and the use of robust genetic tools is warranted to increase our understanding of the clinical significance of SUA.
Resumo:
The objective of this work was to study the response to water stress of a drought sensitive soybean cultivar inoculated with Bradyrhizobium japonicum (strain CB1809, Semia 586) and B. elkanii (strain 29W, Semia 5019). CB1809 nodulated plants produced a significantly higher root fraction (19%) than 29W (14.6%). Plants inoculated with CB1809 produced less nodules and accumulated more nitrogen than those inoculated with 29W. In general, low amounts of ureides in nodules were found in watered plants inoculated with either CB1809 or 29W strains, but those levels were five-fold increased in stressed plants inoculated with CB1809. Nodules formed by strain CB1809 had aspartate and glutamate as major amino acids, while those formed by 29W had glutamate, asparagine and alanine. In nodules of plants inoculated with CB1809 aspartate showed the highest accumulation (5 µmol g-1); in stressed plants this amino acid reached a value of 26 µmol g-1, and asparagine was not detected. Nodules formed by the strain 29W accumulated 1 µmol g-1 of aspartate, whether plants were stressed or not. Asparagine was the major amino acid found in nodules from watered plants (6 µmol g-1) and the amount of this amino acid was six-fold increased when plants were water stressed.
Resumo:
The rice low phytic acid (lpa) mutant Os-lpa-XS110-1(XS-lpa) has ~45 % reduction in seed phytic acid (PA) compared with the wild-type cultivar Xiushui 110. Previously, a single recessive gene mutation was shown to be responsible for the lpa phenotype and was mapped to a region of chromosome 3 near OsMIK (LOC_Os03g52760) and OsIPK1 (LOC_Os03g51610), two genes involved in PA biosynthesis. Here, we report the identification of a large insert in the intron of OsMIK in the XS-lpa mutant. Sequencing of fragments amplified through TAIL-PCRs revealed that the insert was a derivative of the LINE retrotransposon gene LOC_Os03g56910. Further analyses revealed the following characteristics of the insert and its impacts: (1) the inserted sequence of LOC_Os03g56910 was split at its third exon and rejoined inversely, with its 5' and 3' flanking sequences inward and the split third exon segments outward; (2) the LOC_Os03g56910 remained in its original locus in XS-lpa, and the insertion probably resulted from homologous recombination repair of a DNA double strand break; (3) while the OsMIK transcripts of XS-lpa and Xiushui 110 were identical, substantial reductions of the transcript abundance (~87 %) and the protein level (~60 %) were observed in XS-lpa, probably due to increased methylation in its promoter region. The above findings are discussed in the context of plant mutagenesis, epigenetics and lpa breeding.
Resumo:
Jasmonic acid and its precursors are potent regulatory molecules in plants. We devised a method for the simultaneous extraction of these compounds from plant leaves to quantitate changes in the levels of jasmonate family members during health and on wounding. During our study, we identified a novel 16-carbon cyclopentenoic acid in leaf extracts from Arabidopsis and potato. The new compound, a member of the jasmonate family of signals, was named dinor-oxo-phytodienoic acid. Dinor-oxo-phytodienoic acid was not detected in the Arabidopsis mutant fad5, which is incapable of synthesizing 7Z,10Z, 13Z-hexadecatrienoic acid (16:3), suggesting that the metabolite is derived directly from plastid 16:3 rather than by beta-oxidation of the 18-carbon 12-oxo-phytodienoic acid. Simultaneous quantitation of jasmonate family members in healthy leaves of Arabidopsis and potato suggest that different plant species have different relative levels of jasmonic acid, oxo-phytodienoic acid, and dinor-oxo-phytodienoic acid. We term these profiles "oxylipin signatures." Dinor-oxo-phytodienoic acid levels increased dramatically in Arabidopsis and potato leaves on wounding, suggesting roles in wound signaling. Treatment of Arabidopsis with micromolar levels of dinor-oxo-phytodienoic acid increased the ability of leaf extracts to transform linoleic acid into the alpha-ketol 13-hydroxy-12-oxo-9(Z) octadecenoic acid indicating that the compound can regulate part of its own biosynthetic pathway. Tightly regulated changes in the relative levels of biologically active jasmonates may permit sensitive control over metabolic, developmental, and defensive processes in plants.
Resumo:
The relative occurrence of genetic variants of human alpha 1-acid glycoprotein (AGP) in relation to changes in glycosylation was studied in sera of patients with burn injury, media of cytokine-treated primary cultures of human hepatocytes and Hep 3B cells, and sera of transgenic mice expressing the human AGP-A gene. It is concluded (i) that the glycosylation of AGP was not dependent on its genetic expression and (ii) that both the variants determined by the AGP-A gene as well as by the AGP-B/B' genes are increased after inflammation or treatment with interleukins 1 and 6.
Resumo:
Extracellular acidification has been shown to generate action potentials (APs) in several types of neurons. In this study, we investigated the role of acid-sensing ion channels (ASICs) in acid-induced AP generation in brain neurons. ASICs are neuronal Na(+) channels that belong to the epithelial Na(+) channel/degenerin family and are transiently activated by a rapid drop in extracellular pH. We compared the pharmacological and biophysical properties of acid-induced AP generation with those of ASIC currents in cultured hippocampal neurons. Our results show that acid-induced AP generation in these neurons is essentially due to ASIC activation. We demonstrate for the first time that the probability of inducing APs correlates with current entry through ASICs. We also show that ASIC activation in combination with other excitatory stimuli can either facilitate AP generation or inhibit AP bursts, depending on the conditions. ASIC-mediated generation and modulation of APs can be induced by extracellular pH changes from 7.4 to slightly <7. Such local extracellular pH values may be reached by pH fluctuations due to normal neuronal activity. Furthermore, in the plasma membrane, ASICs are localized in close proximity to voltage-gated Na(+) and K(+) channels, providing the conditions necessary for the transduction of local pH changes into electrical signals.
Resumo:
Natural genetic variation is crucial for adaptability of plants to different environments. Seed dormancy prevents precocious germination in unsuitable conditions and is an adaptation to a major macro-environmental parameter, the seasonal variation in temperature and day length. Here we report the isolation of IBO, a quantitative trait locus (QTL) that governs c. 30% of germination rate variance in an Arabidopsis recombinant inbred line (RIL) population derived from the parental accessions Eilenburg-0 (Eil-0) and Loch Ness-0 (Lc-0). IBO encodes an uncharacterized phosphatase 2C-related protein, but neither the Eil-0 nor the Lc-0 variant, which differ in a single amino acid, have any appreciable phosphatase activity in in vitro assays. However, we found that the amino acid change in the Lc-0 variant of the IBO protein confers reduced germination rate. Moreover, unlike the Eil-0 variant of the protein, the Lc-0 variant can interfere with the activity of the phosphatase 2C ABSCISIC ACID INSENSITIVE 1 in vitro. This suggests that the Lc-0 variant possibly interferes with abscisic acid signaling, a notion that is supported by physiological assays. Thus, we isolated an example of a QTL allele with a nonsynonymous amino acid change that might mediate local adaptation of seed germination timing.
Resumo:
The role of GABA(B) receptors in sleep is still poorly understood. GHB (γ-hydroxybutyric acid) targets these receptors and is the only drug approved to treat the sleep disorder narcolepsy. GABA(B) receptors are obligate dimers comprised of the GABA(B2) subunit and either one of the two GABA(B1) subunit isoforms, GABA(B1a) and GABA(B1b). To better understand the role of GABA(B) receptors in sleep regulation, we performed electroencephalogram (EEG) recordings in mice devoid of functional GABA(B) receptors (1(-/-) and 2(-/-)) or lacking one of the subunit 1 isoforms (1a(-/-) and 1b(-/-)). The distribution of sleep over the day was profoundly altered in 1(-/-) and 2(-/-) mice, suggesting a role for GABA(B) receptors in the circadian organization of sleep. Several other sleep and EEG phenotypes pointed to a more prominent role for GABA(B1a) compared with the GABA(B1b) isoform. Moreover, we found that GABA(B1a) protects against the spontaneous seizure activity observed in 1(-/-) and 2(-/-) mice. We also evaluated the effects of the GHB-prodrug GBL (γ-butyrolactone) and of baclofen (BAC), a high-affinity GABA(B) receptor agonist. Both drugs induced a state distinct from physiological sleep that was not observed in 1(-/-) and 2(-/-) mice. Subsequent sleep was not affected by GBL whereas BAC was followed by a delayed hypersomnia even in 1(-/-) and 2(-/-) mice. The differential effects of GBL and BAC might be attributed to differences in GABA(B)-receptor affinity. These results also indicate that all GBL effects are mediated through GABA(B) receptors, although these receptors do not seem to be involved in mediating the BAC-induced hypersomnia.