997 resultados para Pressure transducers.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure (W0.4Al0.6)C powder of about 1 mu m in diameter was sintered by the high pressure sintering (HPS) process without the addition of any binder phase. The microstructure, Vickers micro hardness and density versus the sintering time and temperature are well described. The most suitable sintering condition under pressure of 4.5 GPa is 1873 K for 8 min. Under this sintering condition, the hardness can reach 2295 kg mm(-2) and the relative density can reach 98.6%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lanthanum magnesium hexaaluminate is a very important ceramic material for high temperature applications. In this paper lanthanum magnesium hexaaluminate has been synthesized directly by solid-state reaction. The forming mechanism was investigated by XRD. The SEM photographs show that the prepared powders are made of hexagonal plates. These powders can be well sintered at the high temperature (1600 degrees C) under the high pressure (4.5 GPa), and the relative density reaches 94.8%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast densification of 8YSZ ceramics under a high pressure of 4.5 GPa was carried out at different temperatures (800, 1000, 1450 degrees C), by which a high relative density above 92% could be obtained. FT-Raman spectra indicate that the 8YSZ underwent a phase transition from partially tetragonal to partially cubic phase as temperatures increase from 1000 to 1450 degrees C when sintering under high pressure. The electrical properties of the samples under different high-pressure sintering conditions were measured by complex impedance method. The total conductivity of 0.92 x 10(-2) S cm(-1) at 800 degrees C has been obtained for 8YSZ under high pressure at 1450 degrees C, which is about 200 degrees C lower than that of the samples prepared by conventional pressureless sintering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Heck reaction of iodobenzene and methyl acrylate was investigated with CO2-philic Pd complex catalysts having fluorous ponytails and the organic base triethylamine (Et3N) in the presence of CO2 under solventless conditions at 80 degrees C. The catalysts are not soluble in the organic phase in the absence Of CO2 and the reaction occurs in a solid-liquid biphasic system. When the organic liquid mixture is pressurized by CO2, CO2 is dissolved into the organic phase and this promotes the dissolution of the I'd complex catalysts. As a result, the Heck reaction occurs homogeneously in the organic phase, which enhances the rate of reaction. This positive effect Of CO2 pressurization competes with the negative effect that the reacting species are diluted by an increasing amount of CO2 molecules dissolved. Thus, the maximum conversion appears at a CO2 pressure of around 4 MPa under the present reaction conditions. The catalysts are separated in the solid granules by depressurization and are recyclable without loss of activity after washing with n-hexane and/or water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrahigh pressure technique was employed to extract ginsenosides from roots of ginseng (Panax ginseng C.A. Meyer). The optimal conditions for ultrahigh pressure extraction (UPE) of total ginsenosides were quantified by UV-vis spectrophotometry with the ginsenoside Re as standard, the signal ginsenosides were quantified by HPLC and ELSD with ginsenosides Re, Rg(1), Rb-1, Rc and Rb-2 as standards. Orthogonal design was applied to evaluate the effects of four independent factors (extraction pressure, extraction temperature, extraction time and ethanol concentration) on the yield and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity of ginsenoside, which are based on microwave extraction (ME), ultrasound extraction (UE), soxhlet extraction (SE) and heat reflux extraction (HRE) method. The results showed that UPE method can produce ginsenoside with the highest yield and the best radical scavenging activity compared to other used ones. Scanning electron microscopic (SEM) images of the plant cells after ultrahigh pressure treatment was obtained to provide visual evidence of the disruption effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel hard material of (W0.25Al75)C has been successfully prepared by the high-pressure sintering process without the addition of any binder phase. The high-pressure is a suitable and powerful technique for sintering the binderless hard material, the relative density of the hard material can reach 99.6% under high-pressure sintering. The density of the novel light hard material is only 6.2371 g cm(-3), which is much lighter than the normal hard material. The hardness of the light hard material can reach 18.89 GPa even the aluminum content get the astonished 75%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg-4Al-0.4Mn-xPr (x = 1, 2, 4 and 6 wt.%) magnesium alloys were prepared successfully by the high-pressure die-casting technique. The microstructures, mechanical properties, corrosion behavior as well as strengthening mechanism were investigated. The die-cast alloys were mainly composed of small equiaxed dendrites and the matrix. The fine rigid skin region was related to the high cooling rate and the aggregation of alloying elements, such as Pr. With the Pr content increasing, the alpha-Mg grain sizes were reduced gradually and the amounts of the Al2Pr phase and All, Pr-3 phase which mainly concentrated along the grain boundaries were increased and the relative volume ratio of above two phases was changed. Considering the performance-price ratio, the Pr content added around 4 wt.% was suitable to obtain the optimal mechanical properties which can keep well until 200 degrees C as well as good corrosion resistance. The outstanding mechanical properties were mainly attributed to the rigid casting surface layer, grain refinement, grain boundary strengthening obtained by an amount of precipitates as well as solid solution strengthening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-pressure die-cast (HPDC) Mg-4Al-4RE-0.4Mn (RE = La, Ce) magnesium alloys were prepared and their microstructures, tensile properties, and creep behavior have been investigated in detail. The results show that two binary Al-Ce phases, Al11Ce3 and Al2Ce, are formed mainly along grain boundaries in Mg-4Al-4Ce-0.4Mn alloy, while the phase composition of Mg-4Al-4La-0.4Mn alloy contains only alpha-Mg and Al11La3. The Al11La3 phase comprises large coverage of the grain boundary region and complicated morphologies. Compared with Al11Ce3 phase, the higher volume fraction and better thermal stability of Al11La3 have resulted in better-fortified grain boundaries of the Mg-4Al-4La-0.4Mn alloy. Thus higher tensile strength and creep resistance could be obtained in Mg-4Al-4La-0.4Mn alloy in comparison with that of Mg-4Al-4Ce-0.4Mn. Results of the theoretical calculation that the stability of Al11La3 is the highest among four Al-RE intermetallic compounds supports the experimental results further.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Well-ordered single, double/four parallel, three/four-strands helical chains, and five-strand helical chain with a single atom chain at the center of Si nanowires (NWs) inside single-walled carbon nanotubes (Si-n@SWCNTs) are obtained by means of molecular dynamics. On the basis of these optimized structures, the structural evolution of Si-n@SWCNTs subjected to axial stress at low temperature is also investigated. Interestingly, the double parallel chains depart at the center and transform into two perpendicular parts, the helical shell transformed into chain, and the strand number of Si NWs increases during the stress load. Through analyzis of pair correlation function (PCF), the density of states (DOS), and the z-axis polarized absorption spectra of Si-n@SWCNTs, we find that the behavior of Si-n@SWCNTs under stress strongly depends on SWCNTs' symmetry, diameter, as well as the shape of Nws, which provide valuable information for potential application in high pressure cases such as seabed cable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The calculations presented in this paper are based on the Sanchez-Lacombe (SL) lattice fluid theory. The interaction energy parameter, g*(12)/k, required in this approach was obtained by fitting the cloud points of polystyrene (PS) /methyleyclohexane (MCH) polymer solutions under pressure. The SL lattice fluid theory was used to calculate the spinodals, the binodals, and the Flory-Huggins (FH) interaction parameter of the solutions. The calculated results show that the SL lattice fluid theory can describe the dependences of thermodynamics of PS/MCH solutions on temperature and pressure very well. However, the calculated enthalpy and the excess volume changes indicate that the Clausius-Clapeyron equation cannot be suitable to describe pressure effect on PS/MCH solutions. Further analysis on the thermodynamics of this system under pressure shows that the role of entropy is more important than the excess volume in the present case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel hard material of (W0.5Al0.5)C-0.5 has been successfully sintered under high-pressure (4.5 GPa). The influence of sintering time and temperature on the microstructure, Vickers microhardness and density of the as-prepared specimens are well described. Interestingly, sintering temperature has an amazing influence on the hardness, density and microstructure of the specimen while the sintering time does not. It is found that the most suitable sintering condition from our work is 1600 degrees C and 10 min under pressure of 4.5 GPa. The hardness and relative density of the as-prepared sample can reach 2340 kg mm(-2) and 98.62%, respectively. The cell parameters of the sintered specimen is found to be little smaller than that of the powder, which we propose is related to the high pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure metal powder mixtures of W and Mg at the desired composition were milled in conventional high-energy ball mill, and amorphous alloy W50Mg50 was obtained after milling for 20 h. The structure evolution of elemental powder mixtures was studied following milling and subsequent high pressure and high temperature treatment. The amorphous alloy transform into a nanocrystalline material below 1050 degreesC at 4.0 GPa. On increasing the temperature, it transforms into a mixture of several new crystal phases under high-pressure condition. It also found that both mechanical alloying and high pressure treatment are the two necessary processes to form the nanocrystalline and the new phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cloud-point temperatures (T-c1's) of ti-ans-decahydronaphthalene (TD)/polystyrene (PS, M-w = 270 kg/mol) solutions were determined by fight scattering measurements over a range of temperatures (1-16 degreesC), pressures (100-900 bar), and compositions (4.2-21.6 vol% polymer). The system phase separates upon cooling and the T-c1 was found to increase with the rising pressure for the constant composition. In the absence of special effects this finding indicates positive excess volumes. The special attention was paid to the demixing temperatures as a function of the pressure for the different polymer solutions and the plots in the T-volume fraction plane and P-volume fraction plane. The cloud-point curves of polymer solutions under changing pressures were observed for different compositions, demonstrates that the TD/PS system exhibits UCST (phase separation upon cooling) behavior. With this data the phase diagrams under pressure were calculated applying the Sanchez-Lacombe (SL) lattice fluid theory. Furthermore, the cause of phase separation, i.e., the influence of Flory-Huggins (FH) interaction parameter under pressure was investigated.