990 resultados para Numerical solutions of ODE’s


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we analyze the double Caldeira-Leggett model: the path integral approach to two interacting dissipative harmonic oscillators. Assuming a general form of the interaction between the oscillators, we consider two different situations: (i) when each oscillator is coupled to its own reservoir, and (ii) when both oscillators are coupled to a common reservoir. After deriving and solving the master equation for each case, we analyze the decoherence process of particular entanglements in the positional space of both oscillators. To analyze the decoherence mechanism we have derived a general decay function, for the off-diagonal peaks of the density matrix, which applies both to common and separate reservoirs. We have also identified the expected interaction between the two dissipative oscillators induced by their common reservoir. Such a reservoir-induced interaction, which gives rise to interesting collective damping effects, such as the emergence of relaxation- and decoherence-free subspaces, is shown to be blurred by the high-temperature regime considered in this study. However, we find that different interactions between the dissipative oscillators, described by rotating or counter-rotating terms, result in different decay rates for the interference terms of the density matrix. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In [H. Brezis, A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pure Appl. (9) (1983) 73-97.] Brezis and Friedman prove that certain nonlinear parabolic equations, with the delta-measure as initial data, have no solution. However in [J.F. Colombeau, M. Langlais, Generalized solutions of nonlinear parabolic equations with distributions as initial conditions, J. Math. Anal. Appl (1990) 186-196.] Colombeau and Langlais prove that these equations have a unique solution even if the delta-measure is substituted by any Colombeau generalized function of compact support. Here we generalize Colombeau and Langlais` result proving that we may take any generalized function as the initial data. Our approach relies on recent algebraic and topological developments of the theory of Colombeau generalized functions and results from [J. Aragona, Colombeau generalized functions on quasi-regular sets, Publ. Math. Debrecen (2006) 371-399.]. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a novel combined theoretical and computational model is developed to simulate the heat and mass transfer between a fluidised bed and a workpiece surface, and within the workpiece by considering the fluidised bed as a medium consisting of a double-particle layer and an even porous layer. The heat and mass-transfer flux from the fluidised bed to the workpiece surface is contributed by dense and bubble phases, respectively. The convective heat and mass transfer is simulated by analysing the gas dynamics in the fluidised bed, while radiative heat transfer is modelled by simulating photon emission in a three-dimensional particle array. The simulation shows that convection is approximately constant, while radiation contributes significantly to the heat transfer. The heat-transfer coefficient on an immersed surface near particles is about 6–10 times that on other areas. The transient heat and mass-transfer coefficient, heat and mass-transfer flux on any surface of the workpiece, transient temperature and carbon distributions at any position of the workpiece during the metal carburising process are studied with the simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most fibers are irregular, and they are often subjected to rapid straining during mechanical processing and end-use applications. In this paper, the effect of fiber dimensional irregularities on the dynamic tensile behavior of irregular fibers is examined, using the finite element method (FEM). Fiber dimensional irregularities are simulated with sine waves of different magnitude (10%, 30% and 50% level of diameter variation). The tensile behavior of irregular fibers is examined at different strain rates (333%/sec, 3,333%/sec and 30,000%/sec). The breaking load and breaking extension of irregular fibers at different strain rates are then calculated from the finite element model. The results indicate that strain rate has a significant effect on the dynamic tensile behavior of an irregular fiber, and that the position of the thinnest segment along the fiber affects the simulation results markedly. Under dynamic conditions, an irregular fiber does not necessarily break at the thinnest segment, which is different from the quasi-static results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluidisation characteristics at different surfaces of a work-piece of complex geometry are conducted in a fluidised bed at various conditions including fluidising number, bed temperature and fluidising medium. The quenching of the work-piece is performed experimentally. In particular, the major frequency and energy of the pressure fluctuations are measured as a function of either fluidising velocity or heat transfer position and the results are used to develop a mathematic model. A computational model is developed to simulate gas dynamics and heat transfer between the fluidised bed and the work-piece surface, as well as simulating the temperature within the work-piece. The predicted cooling curves are in good agreement with the experimental results. Based on the simulation results, the flow characteristics of the gas and the temperature of the dense gas-solid phase near the work-piece surface are analysed to understand the heat transfer mechanism in the fluidised bed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports an investigation into the temporal stability of aqueous solutions of psilocin and psilocybin reference drug standards over a period of fourteen days. This study was performed using high performance liquid chromatography utilising a (955% vlv) methanol: 10 mM ammonium formate,
pH 3.5 mobile phase and absorption detection at 269 nm. It was found that the exclusion of light significantly prolonged the useful life of standards, with aqueous solutions of both psilocin and psilocybin being stable over a period of seven days.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finite element (FE) model is developed to investigate mode I delamination toughness of z-pin reinforced composite laminates. The z-pin pullout process is simulated by the deformation of a set of non-linear springs. A critical crack opening displacement (COD) criterion is used to simulate crack growth in a double-cantilever-beam (DCB) made of z-pinned laminates. The toughness of the structure is quantified by the energy release rate, which is calculated using the contour integral method. The FE model is verified for both unpinned and z-pinned laminates. Predicted loading forces from FE analysis are compared to available test data. Good agreement is achieved. Our numerical results indicate that z-pins can greatly increase the mode I delamination toughness of the composite laminates. The influence of design parameters on the toughness enhancement of z-pinned laminates is also investigated, which provides important information to optimise and improve the z-pinning technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interactions between a macro-crack and a cluster of micro-defects are studied numerically by using a series of special finite elements each containing a defect. These special finite elements, which contain defects such as holes, cracks, and inhomogeneities, are developed based on the hybrid displacement, complex potential and conformal mapping techniques. These hybrid-type elements can be used together with the conventional finite elements without any difficulty. Thus, simple finite element models can be devised to study the interactions between a macro-crack and a cluster of micro-defects. In this paper, the mathematical and finite element modeling procedures for the study of the above-mentioned problems are presented.