997 resultados para Nuclear alterations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We reported 11B nuclear magnetic resonance studies of boron nitride (BN) nanotubes prepared by mechano-thermal route. The NMR lineshape obtained at 192.493 MHz (14.7 T) was fitted with two Gaussian functions, and the 11B nuclear magnetization relaxations were satisfied with the stretched–exponential function, exp[-(tlT1)(D+1)/6] (D: space dimension) at all temperatures. In addition, the temperature dependence of spin–lattice relaxation rates was well described by Ti-1 = aT (a: constant, T: temperature) and could be understood in terms of direct phonon process. All the 11BNMR results were explained by considering the inhomogeneous distribution of the paramagnetic metal catalysts, such as α-Fe, Fe–N, and Fe2 B, that were incorporated during the process of high-energy ball milling of boron powder and be synthesized during subsequent thermal annealing. X-ray powder diffraction as well as electron paramagnetic resonance (EPR) on BN nanotubes were also conducted and the results obtained supported these conclusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Further consideration has been given to the reaction pathway of a model peroxyoxalate chemiluminescence system. Again utilising doubly labelled oxalyl chloride and anhydrous hydrogen peroxide, 2D EXSY 13C nuclear magnetic resonance (NMR) spectroscopy experiments allowed for the characterisation of unknown products and key intermediate species on the dark side of the peroxyoxalate chemiluminescence reaction. Exchange spectroscopy afforded elucidation of a scheme comprised of two distinct mechanistic pathways, one of which contributes to chemiluminescence. 13C NMR experiments carried out at varied reagent molar ratios demonstrated that excess amounts of hydrogen peroxide favoured formation of 1,2-dioxetanedione: the intermediate that, upon thermolysis, has been long thought to interact with a fluorophore to produce light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we aimed to detect morphological and biochemical changes in developing germ cells (Gc), testicular sperm (Tsp), and spawned sperm (Ssp) using capacitation-associated characteristics. Gradual changes in the profiles of two membrane proteins, namely NaCl- and detergent-extractable proteins, were observed as compared Gc with Tsp and Tsp with Ssp. These membrane modifications were accomplished mostly through the introduction of new protein sets, both peripheral and integral, into Tsp and Ssp membranes. Activation of serine proteases, particularly in Ssp detergent-extracted proteins with the molecular masses of 38–130 kDa was evident and marked a major difference between Ssp and Tsp. An increase in the level of tyrosine phosphorylation of the proteins ranging from 15 to 20 kDa was noted in Tsp and remained constant in Ssp. Specifically, these three capacitation-associated characteristics could be detected in Ssp, possessing full fertilizing capacity. The lack of an activated proteolytic activity in Tsp resulted in a delayed fertilization, but not affected fertilizing ability. We believe that these characteristics should be advantageous in predicting abalone sperm fertilizing capability, particularly in cases when isolated germ cells or purified Tsp are used in place of spawned sperm in abalone aquaculture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current knowledge of the evolutionary relationships among scallop species (Mollusca: Bivalvia: Pectinidae) in the Indo-Pacific region is rather scanty. To enhance the understanding of the relationships within this group, phylogenies of nine species of scallops with the majority from coastal regions of Thailand, were reconstructed by maximum parsimony, maximum likelihood, and Bayesian methods using sequences of the 16S rRNA of the mitochondrial genome, and a fragment containing the ITS1, 5.8S and ITS2 genes of the nuclear DNA. The trees that resulted from the three methods of analysis were topologically identical, however, gained different levels of support at some nodes. Nine species were clustered into two major clades, corresponding to two subfamilies (Pectininae and Chlamydinae) of the three currently recognized subfamilies within Pectinidae. Overall, the relationships reported herein are mostly in accordance with the previous molecular studies that used sequences of the mtDNA cytochrome oxidase subunit I, and the classification system based on microsculpture of shell features and morphological characteristics of juveniles. Levels of divergences were different among genes (i.e., the 5.8S gene showed the lowest levels of nucleotide divergence at all levels, whereas the 16S rRNA showed the highest level of variation within species, and ITS2 gene revealed the highest level of divergence at higher levels).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skeletal muscle possesses a high degree of plasticity and can adapt to both the physical and metabolic challenges that it faces. An acute bout of exercise is sufficient to induce the expression of a variety of metabolic genes, such as GLUT4, pyruvate dehydrogenase kinase 4 (PDK-4), uncoupling protein-3 (UCP3), and peroxisome proliferator-activated receptor-? coactivator 1 (PGC-1). Reducing muscle glycogen levels before exercise potentiates the effect of exercise on many genes. Similarly, altered substrate availability induces transcription of many of these genes. The purpose of this study was to determine whether glucose ingestion attenuates the exercise-induced increase in a variety of exercise-responsive genes. Six male subjects (28 ± 7 yr; 83 ± 3 kg; peak pulmonary oxygen uptake = 46 ± 6 ml·kg–1·min–1) performed 60 min of cycling at 74 ± 2% of peak pulmonary oxygen uptake on two separate occasions. On one occasion, subjects ingested a 6% carbohydrate drink. On the other occasion, subjects ingested an equal volume of a sweet placebo. Muscle samples were obtained from vastus lateralis at rest, immediately after exercise, and 3 h after exercise. PDK-4, UCP3, PGC-1, and GLUT4 mRNA levels were measured on these samples using real-time RT-PCR. Glucose ingestion attenuated (P < 0.05) the exercise-induced increase in PDK-4 and UCP3 mRNA. A similar trend (P = 0.09) was observed for GLUT4 mRNA. In contrast, PGC-1 mRNA increased following exercise to the same extent in both conditions. These data suggest that glucose availability can modulate the effect of exercise on metabolic gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

South Asia has emerged in the post-Cold War era as a region where ongoing nuclear rivalry has the potential to result in a nuclear exchange between India and Pakistan. The United States, together with the global community, is devoting considerable effort to prevent the further development and deployment of nuclear weapons by India and Pakistan. This thesis analyses the underlying reasons for the ongoing nuclear rivalry between India and Pakistan, details post-Cold War initiatives to end the nuclear rivalry and examines the prospect of United States efforts to cap, reduce and eventually eliminate the nuclear arsenals of India and Pakistan. The thesis finds that historical factors form the basis of the continuing hostility and animosity between the two nations. The two nations have been bitter rivals since the time of partition in 1947 and the disputed territory of Kashmir continues to be the manifestation of deep seated antagonism and hostility. Pakistan's geography leaves it extremely vulnerable to conventional Indian attack and possession of nuclear weapons is seen as a means to redress the imbalance. Strong domestic support together with fervent nationalism and international prestige will continue to drive the nuclear programs of each nation. This thesis concludes that the nuclear rivalry between India and Pakistan is regional in nature and the end of the Cold War has done little to improve the prospects for nuclear disarmament in the region. United States led efforts have failed to persuade India or Pakistan to either accede to the Non-Proliferation Treaty (NPT) or dismantle their nuclear weapons. The thesis also notes that the United States has failed to take account of China as a significant regional power and it's impact on the nuclear programs of India and Pakistan. A fresh approach (to include China) with more emphasis on regional dialogue is suggested as a first step to ending the nuclear rivalry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypertension is one of many side effects of oral contraceptive use in a small percentage of women. Although the underlying pathology has yet to be fully resolved, alterations in the renin-angiotensin-aldosterone axis, sympathetic nervous system/ renal and cardiac function have been implicated. In the thesis to be presented, the possible involvement of alterations in renal and myocardial adrenoceptor characteristics in the pathogenesis of steroid contraceptive-induced hypertension in rats was examined by radioligand binding techniques. In Chapter 2, a rat model of OC hypertension is described. Chronic low-dose administration of ethynyloestradiol (EE2), levonorgestrel (NG) or a combination of both steroids (EE2/NG) to female Sprague-Dawley rats was shown to significantly increase systolic blood pressure (SBP). Renal and cardiac hypertrophy developed in association with EE2-, EE2/NG- but not NG-induced hypertension. Moreover, whereas administration of NG alone attenuated body weight gain, combined EE2/NG administration increased body weight gain from the second week of treatment onwards. Based on the above observations, it is proposed that EE2 and NG induce hypertension in rats via different mechanisms. Although SBP was elevated to a similar maximum in all steroid-treated groups (+ 20 mmHg compared to controls), only with EE2 administration did SBP remain elevated for the duration of the 17 week treatment regimen. NG may therefore have a protective effect on blood pressure with long-term combined steroid contraceptive treatment. In Chapter 4, renal adrenoceptors were characterized using radioactively labelled adrenocephor antagonists. Under appropriate conditions, binding of [3H]-prazosin and [3H]-rauwolscine to membrane preparations of whole rat kidney displayed the kinetics, saturability and specificity of α1- and α2 -adrenoceptors respectively, which were present in a ratio 3:1. In contrast, [3H]-dihydroergocryptine ([3H]-DHE) apparently bound to both α1 and α2-adrenoceptors. Binding sites identified by [125I] –iodocyanopindolol (ICYP) had the recognition characteristics of β-adrenoceptors. In drug competition studies using the subtype-selective antagonists practolol (β1) and ICI 118,551 (β2)/ the ratio of β1- to β2 -adrenoceptors was found to be approximately 2:1. Subsequently, renal adrenoceptors were investigated at various stages during the development of hypertension with the different steroid contraceptive treatments (Chapters 5 and 6). Preliminary binding studies with [3H]-DHE and [3H]-prazosin suggested that the number of renal α2 - but not α1-adrenoceptors was reduced in rats with established EE2-induced hypertension (17 weeks treatment). This was subsequently confirmed using [3H]-rauwolscine, which in addition showed that the reduction in renal α2 -adrenoceptor number occurred during the developmental stage of EE2/NG~induced hypertension (6 weeks treatment) and established EE2-induced hypertension (12 weeks treatment). NG induced hypertension was unassociated with changes in renal α1- and α2-adrenoceptor characteristics. Renal β-adrenoceptor affinity was reduced in established EE2-, but not NG- or EE2/NG- induced hypertension. Moreover, the β-adrenoceptor agonist (-)-isoprenaline bound to renal β-adrenoceptors with reduced affinity following EE2 administration. Several endogenous and synthetic steroids were found to be ineffective inhibitors of [3H] –prazosin, [3H] –rauwolscine and ICYP binding excluding a direct interaction of these steroids with renal α1-, α2- and β -adrenoceptors. In Chapter 7, myocardial adrenoceptors were characterized and investigated in steroid-treated rats. In membrane preparations of whole myocardium, [3H]-prazosin binding was characteristically to α1- adrenoceptors, whereas there was a notable absence of [3H]-rauwolscine binding. Using ICYP, β-adrenoceptors were also detected, the ratio of β1- to β2~adrenoceptors being 3:1. Steroid contraceptive-induced hypertension was not associated with myocardial α1-adrenoceptor changes. Similarly, myocardial β-adrenoceptors were unchanged in established EE2-, NG- and EE2/NG-induced hypertension (12 weeks treatment). The affinity of (-)-isoprenaline for myocardial β-adrenoceptors was unaffected by EE2 aditiinistration. These studies suggest that established EE2- but not NG-induced hypertension in rats is associated with selective alterations in renal α2- and (β-adrenoceptors. These adrenoceptor changes may help to maintain elevated blood pressure by affecting the control of renal function by the sympathetic nervous system, catecholamines and several hormones which affect renin release and the transport of fluid and electrolytes in the nephron.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycogen availability can influence glucose transporter 4 (GLUT4) expression in skeletal muscle through unknown mechanisms. The multisubstrate enzyme AMP-activated protein kinase (AMPK) has also been shown to play an important role in the regulation of GLUT4 expression in skeletal muscle. During contraction, AMPK [alpha]2 translocates to the nucleus and the activity of this AMPK isoform is enhanced when skeletal muscle glycogen is low. In this study, we investigated if decreased pre-exercise muscle glycogen levels and increased AMPK [alpha]2 activity reduced the association of AMPK with glycogen and increased AMPK [alpha]2 translocation to the nucleus and GLUT4 mRNA expression following exercise. Seven males performed 60 min of exercise at ~70% [VO.sub.2] peak on 2 occasions: either with normal (control) or low (LG) carbohydrate pre-exercise muscle glycogen content. Muscle samples were obtained by needle biopsy before and after exercise. Low muscle glycogen was associated with elevated AMPK [alpha]2 activity and acetyl-CoA carboxylase [beta] phosphorylation, increased translocation of AMPK [alpha]2 to the nucleus, and increased GLUT4 mRNA. Transfection of primary human myotubes with a constitutively active AMPK adenovirus also stimulated GLUT4 mRNA, providing direct evidence of a role of AMPK in regulating GLUT4 expression. We suggest that increased activation of AMPK [alpha]2 under conditions of low muscle glycogen enhances AMPK [alpha]2 nuclear translocation and increases GLUT4 mRNA expression in response to exercise in human skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skeletal muscle adaptations to exercise confer many of the health benefits of physical activity and occur partly through alterations in skeletal muscle gene expression. The exact mechanisms mediating altered skeletal muscle gene expression in response to exercise are unknown. However, in recent years, chromatin remodelling through epigenetic histone modifications has emerged as a key regulatory mechanism controlling gene expression in general. The purpose of this study was to examine the effect of exercise on global histone modifications that mediate chromatin remodelling and transcriptional activation in human skeletal muscle in response to exercise. In addition, we sought to examine the signalling mechanisms regulating these processes. Following 60 min of cycling, global histone 3 acetylation at lysine 9 and 14, a modification associated with transcriptional initiation, was unchanged from basal levels, but was increased at lysine 36, a site associated with transcriptional elongation. We examined the regulation of the class IIa histone deacetylases (HDACs), which are enzymes that suppress histone acetylation and have been implicated in the adaptations to exercise. While we found no evidence of proteasomal degradation of the class IIa HDACs, we found that HDAC4 and 5 were exported from the nucleus during exercise, thereby removing their transcriptional repressive function. We also observed activation of the AMP-activated protein kinase (AMPK) and the calcium–calmodulin-dependent protein kinase II (CaMKII) in response to exercise, which are two kinases that induce phosphorylation-dependent class IIa HDAC nuclear export. These data delineate a signalling pathway that might mediate skeletal muscle adaptations in response to exercise.