996 resultados para Nelson Almeida
Resumo:
This paper shows a new hybrid method for risk assessment regarding interruptions in sensitive processes due to faults in electric power distribution systems. This method determines indices related to long duration interruptions and short duration voltage variations (SDVV), such as voltage sags and swells in each customer supplied by the distribution network. Frequency of such occurrences and their impact on customer processes are determined for each bus and classified according to their corresponding magnitude and duration. The method is based on information regarding network configuration, system parameters and protective devices. It randomly generates a number of fault scenarios in order to assess risk areas regarding long duration interruptions and voltage sags and swells in an especially inventive way, including frequency of events according to their magnitude and duration. Based on sensitivity curves, the method determines frequency indices regarding disruption in customer processes that represent equipment malfunction and possible process interruptions due to voltage sags and swells. Such approach allows for the assessment of the annual costs associated with each one of the evaluated power quality indices.
Resumo:
This paper discusses the need to simultaneously monitor voltage unbalance and harmonic distortions in addition to root-mean-square voltage values. An alternative way to obtain the parameters related to voltage unbalance at fundamental frequency as well as voltage harmonic distortions is here proposed, which is based on the representation of instantaneous values at the axes and at the instantaneous Euclidean norm. A new power-quality (PQ) index is then proposed to combine the effects of voltage unbalance and harmonic distortions. This new index is easily implemented into existing electronic power meters. This PQ index is determined from the analysis of temperature rise in induction motor windings, which were tested for long periods of time. This paper also shows that these voltage disturbances, which are harmful to the lifetime expectancy of motors, can be measured by alternative ways in relation to conventional methods. Although this paper deals with induction motors only, the results show the relevance for further studies on other pieces of equipment.
Resumo:
This paper presents a new methodology to estimate harmonic distortions in a power system, based on measurements of a limited number of given sites. The algorithm utilizes evolutionary strategies (ES), a development branch of evolutionary algorithms. The main advantage in using such a technique relies upon its modeling facilities as well as its potential to solve fairly complex problems. The problem-solving algorithm herein proposed makes use of data from various power-quality (PQ) meters, which can either be synchronized by high technology global positioning system devices or by using information from a fundamental frequency load flow. This second approach makes the overall PQ monitoring system much less costly. The algorithm is applied to an IEEE test network, for which sensitivity analysis is performed to determine how the parameters of the ES can be selected so that the algorithm performs in an effective way. Case studies show fairly promising results and the robustness of the proposed method.
Resumo:
In this paper a computational implementation of an evolutionary algorithm (EA) is shown in order to tackle the problem of reconfiguring radial distribution systems. The developed module considers power quality indices such as long duration interruptions and customer process disruptions due to voltage sags, by using the Monte Carlo simulation method. Power quality costs are modeled into the mathematical problem formulation, which are added to the cost of network losses. As for the EA codification proposed, a decimal representation is used. The EA operators, namely selection, recombination and mutation, which are considered for the reconfiguration algorithm, are herein analyzed. A number of selection procedures are analyzed, namely tournament, elitism and a mixed technique using both elitism and tournament. The recombination operator was developed by considering a chromosome structure representation that maps the network branches and system radiality, and another structure that takes into account the network topology and feasibility of network operation to exchange genetic material. The topologies regarding the initial population are randomly produced so as radial configurations are produced through the Prim and Kruskal algorithms that rapidly build minimum spanning trees. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper addresses the development of a hybrid-mixed finite element formulation for the quasi-static geometrically exact analysis of three-dimensional framed structures with linear elastic behavior. The formulation is based on a modified principle of stationary total complementary energy, involving, as independent variables, the generalized vectors of stress-resultants and displacements and, in addition, a set of Lagrange multipliers defined on the element boundaries. The finite element discretization scheme adopted within the framework of the proposed formulation leads to numerical solutions that strongly satisfy the equilibrium differential equations in the elements, as well as the equilibrium boundary conditions. This formulation consists, therefore, in a true equilibrium formulation for large displacements and rotations in space. Furthermore, this formulation is objective, as it ensures invariance of the strain measures under superposed rigid body rotations, and is not affected by the so-called shear-locking phenomenon. Also, the proposed formulation produces numerical solutions which are independent of the path of deformation. To validate and assess the accuracy of the proposed formulation, some benchmark problems are analyzed and their solutions compared with those obtained using the standard two-node displacement/ rotation-based formulation.
Resumo:
This paper addresses the development of several alternative novel hybrid/multi-field variational formulations of the geometrically exact three-dimensional elastostatic beam boundary-value problem. In the framework of the complementary energy-based formulations, a Legendre transformation is used to introduce the complementary energy density in the variational statements as a function of stresses only. The corresponding variational principles are shown to feature stationarity within the framework of the boundary-value problem. Both weak and linearized weak forms of the principles are presented. The main features of the principles are highlighted, giving special emphasis to their relationships from both theoretical and computational standpoints. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
By means of continuous topology optimization, this paper discusses the influence of material gradation and layout in the overall stiffness behavior of functionally graded structures. The formulation is associated to symmetry and pattern repetition constraints, including material gradation effects at both global and local levels. For instance, constraints associated with pattern repetition are applied by considering material gradation either on the global structure or locally over the specific pattern. By means of pattern repetition, we recover previous results in the literature which were obtained using homogenization and optimization of cellular materials.
Resumo:
The ability to control both the minimum size of holes and the minimum size of structural members are essential requirements in the topology optimization design process for manufacturing. This paper addresses both requirements by means of a unified approach involving mesh-independent projection techniques. An inverse projection is developed to control the minimum hole size while a standard direct projection scheme is used to control the minimum length of structural members. In addition, a heuristic scheme combining both contrasting requirements simultaneously is discussed. Two topology optimization implementations are contributed: one in which the projection (either inverse or direct) is used at each iteration; and the other in which a two-phase scheme is explored. In the first phase, the compliance minimization is carried out without any projection until convergence. In the second phase, the chosen projection scheme is applied iteratively until a solution is obtained while satisfying either the minimum member size or minimum hole size. Examples demonstrate the various features of the projection-based techniques presented.
Resumo:
The purpose of this paper was to study the main effects of the turning in the superficial integrity of the duplex stainless steel ASTM A890-6A. The tests were conducted on a turning centre with carbide tools and the main entrances variables were: tool material class, feed rate, cutting depth, cutting speed and cutting fluid utilisation. The answers were analysed: microstructural analysis by optical microscopy and x-ray diffraction, cutting forces measurements by a piezoelectric dynamometer, surface roughness, residual stress by x-ray diffraction technique and the microhardness measurements. The results do not show any changes in the microstructural of the material, even when the greater cutting parameters were used. The smaller feed rate (0.1 mm/v), smaller cutting speed (110 m/min) and the greater cutting depth (0.5 mm) provided the smaller values for the tensile residual stress, the smaller surface roughness and the greater microhardness.
Resumo:
The phenylethanoid glycoside acteoside and the iridoids ipolamiide and 4-methoxycarbonyl-7-methylcyclopenta[c]pyran (fulvoipolamiide) were isolated from the leaves of Stachytarpheta glabra. The solid state structure of fulvoipolamiide was confirmed by X-ray diffraction studies. The molecules of fulvoipolamiide are displayed in layers parallel to the crystallographic axis a. This molecule is planar with electron delocalization in the fused ring system and the pyran rings of adjacent layers in the solid state structure are involved in a pi-pi stacking interaction. Raman spectroscopy has also been used to characterize the most important bands present in the spectra of fulvoipolamiide and ipolamiide, and comparison made with literature allows the assignment of some key markers, specially the bands in the 1600-1700 cm(-1) range. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Paper products show dimensional changes when subjected to moisture content modification. Hygroexpansivity was investigated in a commercial paper machine operating at 1256 m/min by a set of measurements on 75 g/m(2) reprographic bleached eucalyptus pulp paper samples. The present work shows hygroexpansivity development in different sections of the paper machine along the manufacturing direction. The measurement results demonstrate the effects of papermaking process operations on paper hygroexpansivity and lead to the confirmation of fiber orientation degree, drying restraint and shrinkage and paper tension as significant influencing factors. Structural, strength and elastic properties of paper were also measured as a function of machine direction position and presented for discussion purposes.
Resumo:
In this work we present the fabrication and operation of incandescent microlamps for integrated optics applications. This microlamp emits white and infrared light from a chromium resistor embedded in a free-standing silicon oxynitride (SiO(x)N(y)) cantilever that can be coupled to an optical waveguide. In fact, the chromium resistor is sandwiched between layers of SiO(x)N(y) that isolate it from the atmosphere, while electric current heats the resistor to incandescent temperatures. The same SiO(x)N(y) material used in the microlamp fabrication is also used to produce the optical waveguides to allow a monolithic integration of light source and optical circuit. Front-side bulk micromachining of the silicon substrate in potassium hydroxide (KOH) solution is used to fabricate the cantilevers that thermally isolate the resistors from the substrate, thus reducing the heat transfer and the current required to light the lamp.
Resumo:
This work introduces the problem of the best choice among M combinations of the shortest paths for dynamic provisioning of lightpaths in all-optical networks. To solve this problem in an optimized way (shortest path and load balance), a new fixed routing algorithm, named Best among the Shortest Routes (BSR), is proposed. The BSR`s performance is compared in terms of blocking probability and network utilization with Dijkstra`s shortest path algorithm and others algorithms proposed in the literature. The evaluated scenarios include several representative topologies for all-optical networking and different wavelength conversion architectures. For all studied scenarios, BSR achieved superior performance. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Due to the several kinds of services that use the Internet and data networks infra-structures, the present networks are characterized by the diversity of types of traffic that have statistical properties as complex temporal correlation and non-gaussian distribution. The networks complex temporal correlation may be characterized by the Short Range Dependence (SRD) and the Long Range Dependence - (LRD). Models as the fGN (Fractional Gaussian Noise) may capture the LRD but not the SRD. This work presents two methods for traffic generation that synthesize approximate realizations of the self-similar fGN with SRD random process. The first one employs the IDWT (Inverse Discrete Wavelet Transform) and the second the IDWPT (Inverse Discrete Wavelet Packet Transform). It has been developed the variance map concept that allows to associate the LRD and SRD behaviors directly to the wavelet transform coefficients. The developed methods are extremely flexible and allow the generation of Gaussian time series with complex statistical behaviors.
Resumo:
In previous studies, we presented main strategies for suspending the rotor of a mixed-flow type (centrifugal and axial) ventricular assist device (VAD), originally presented by the Institute Dante Pazzanese of Cardiology (IDPC), Brazil. Magnetic suspension is achieved by the use of a magnetic bearing architecture in which the active control is executed in only one degree of freedom, in the axial direction of the rotor. Remaining degrees of freedom, excepting the rotation, are restricted only by the attraction force between pairs of permanent magnets. This study is part of a joint project in development by IDPC and Escola Politecnica of Sao Paulo University, Brazil. This article shows advances in that project, presenting two promising solutions for magnetic bearings. One solution uses hybrid cores as electromagnetic actuators, that is, cores that combine iron and permanent magnets. The other solution uses actuators, also of hybrid type, but with the magnetic circuit closed by an iron core. After preliminary analysis, a pump prototype has been developed for each solution and has been tested. For each prototype, a brushless DC motor has been developed as the rotor driver. Each solution was evaluated by in vitro experiments and guidelines are extracted for future improvements. Tests have shown good results and demonstrated that one solution is not isolated from the other. One complements the other for the development of a single-axis-controlled, hybrid-type magnetic bearing for a mixed-flow type VAD.