1000 resultados para Muscle zygomatique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis examines the potential beneficial role of inflammation in skeletal muscle tissue. This work establishes cyclooxygenase pathway derived prostaglandins as key anabolic signalling molecules regulating skeletal muscle cell growth and examines changes in circulating inflammatory lipid mediators and intramuscular anabolic signaling in response to acute resistance exercise in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition from fetal to postnatal life involves clearance of liquid from the lung and airways, and rapid formation of a functional residual capacity. Despite the importance of the diaphragm in this process, the impact of birth on the mechanical and functional activity of its muscle fibers is not known. This study determined the contractile characteristics of individual “skinned” diaphragm fibers from 70 days (0.47) gestation to after birth in sheep. Based on differential sensitivity to the divalent ions calcium (Ca2+) and strontium (Sr2+), all fibers in the fetal diaphragm were classified as “fast,” whereas fibers from the adult sheep diaphragm exhibited a “hybrid” phenotype where both “fast” and “slow” characteristics were present within each single fiber. Transition to the hybrid phenotype occurred at birth, was evident after only 40 min of spontaneous breathing, and could be induced by simple mechanical stretch of diaphragm fibers from near-term fetuses (∼147 days gestation). Both physical stretch of isolated fibers, and mechanical ventilation of the fetal diaphragm in situ, significantly increased sensitivity to Ca2+ and Sr2+, maximum force generating capacity, and decreased passive tension in near-term and preterm fetuses; however, only fibers from near-term fetuses showed a complete transition to a “hybrid” activation profile. These findings suggest that stretch associated with the transition from a liquid to air-filled lung at birth induces physical changes of proteins determining the activation and elastic properties of the diaphragm. These changes may allow the diaphragm to meet the increased mechanical demands of breathing immediately after birth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Healthy living throughout the lifespan requires continual growth and repair of cardiac, smooth, and skeletal muscle. To effectively maintain these processes muscle cells detect extracellular stress signals and efficiently transmit them to activate appropriate intracellular transcriptional programs. The striated muscle activator of Rho signaling (STARS) protein, also known as Myocyte Stress-1 (MS1) protein and Actin-binding Rho-activating protein (ABRA) is highly enriched in cardiac, skeletal, and smooth muscle. STARS binds actin, co-localizes to the sarcomere and is able to stabilize the actin cytoskeleton. By regulating actin polymerization, STARS also controls an intracellular signaling cascade that stimulates the serum response factor (SRF) transcriptional pathway; a pathway controlling genes involved in muscle cell proliferation, differentiation, and growth. Understanding the activation, transcriptional control and biological roles of STARS in cardiac, smooth, and skeletal muscle, will improve our understanding of physiological and pathophysiological muscle development and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetes, obesity, and cancer affect upward of 15% of the world’s population. Interestingly, all three diseases juxtapose dysregulated intracellular signaling with altered metabolic state. Exactly which genetic factors define stable metabolic set points in vivo remains poorly understood. Here, we show that hedgehog signaling rewires cellular metabolism. We identify a cilium-dependent Smo-Ca2+-Ampk axis that triggers rapid Warburg-like metabolic reprogramming within minutes of activation and is required for proper metabolic selectivity and flexibility. We show that Smo modulators can uncouple the Smo-Ampk axis from canonical signaling and identify cyclopamine as one of a new class of “selective partial agonists,” capable of concomitant inhibition of canonical and activation of noncanonical hedgehog signaling. Intriguingly, activation of the Smo-Ampk axis in vivo drives robust insulin-independent glucose uptake in muscle and brown adipose tissue. These data identify multiple noncanonical endpoints that are pivotal for rational design of hedgehog modulators and provide a new therapeutic avenue for obesity and diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to determine the effect of a single bout of exercise on GLUT4 gene expression in muscle of patients with type 2 diabetes (T2D) and control subjects, matched for age and body mass index. Nine patients with T2D and nine control subjects performed 60 min of cycling exercise at ∼55% peak power (Wmax). Skeletal muscle biopsies were obtained at baseline, immediately post and 3-h post exercise. GLUT4 mRNA expression increased (p < 0.05) to a similar extent immediately post exercise in control (∼60%) and T2D (∼66%) subjects, and remained elevated (p < 0.05) 3-h post exercise with no differences between groups. Similarly, p-AMP-activated protein kinase, p38 mitogen-activated kinase and proliferator-activated receptor gamma co-activator-alpha mRNA expression were increased (p < 0.05) post exercise, and were not different between the groups. In conclusion, a single bout of exercise increased skeletal muscle GLUT4 mRNA expression in patients with T2D to a similar extent as in control subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer cachexia is a wasting condition, driven by systemic inflammation and oxidative stress. This study investigated eicosapentaenoic acid (EPA) in combination with oxypurinol as a treatment in a mouse model of cancer cachexia. Mice with cancer cachexia were randomized into 4 treatment groups (EPA (0.4 g/kg/day), oxypurinol (1 mmol/L ad-lib), combination, or control), and euthanized after 29 days. Analysis of oxidative damage to DNA, mRNA analysis of pro-oxidant, antioxidant and proteolytic pathway components, along with enzyme activity of pro- and antioxidants were completed on gastrocnemius muscle. The control group displayed earlier onset of tumor compared to EPA and oxypurinol groups (P<0.001). The EPA group maintained body weight for an extended duration (20 days) compared to the oxypurinol (5 days) and combination (8 days) groups (P<0.05). EPA (18.2±3.2 pg/ml) and combination (18.4±3.7 pg/ml) groups had significantly higher 8-OH-dG levels than the control group (12.9±1.4 pg/ml, P≤0.05) indicating increased oxidative damage to DNA. mRNA levels of GPx1, MURF1 and MAFbx were higher following EPA treatment compared to control (P≤0.05). Whereas oxypurinol was associated with higher GPx1, MnSOD, CAT, XDH, MURF1, MAFbx and UbB mRNA compared to control (P≤0.05). Activity of total SOD was higher in the oxypurinol group (32.2±1.5 U/ml) compared to control (27.0±1.3 U/ml, P<0.01), GPx activity was lower in the EPA group (8.76±2.0 U/ml) compared to control (14.0±1.9 U/ml, P<0.05), and catalase activity was lower in the combination group (14.4±2.8 U/ml) compared to control (20.9±2.0 U/ml, P<0.01). There was no change in XO activity. The increased rate of weight decline in mice treated with oxypurinol indicates that XO may play a protective role during the progression of cancer cachexia, and its inhibition is detrimental to outcomes. In combination with EPA, there was little significant improvement from control, indicating oxypurinol is unlikely to be a viable treatment compound in cancer cachexia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis : Insulin's rate of entry into skeletal muscle appears to be the rate-limiting step for muscle insulin action and is slowed by insulin resistance. Despite its obvious importance, uncertainty remains as to whether the transport of insulin from plasma to muscle interstitium is a passive diffusional process or a saturable transport process regulated by the insulin receptor. Methods : To address this, here we directly measured the rate of 125I-labelled insulin uptake by rat hindlimb muscle and examined how that is affected by adding unlabelled insulin at high concentrations. We used mono-iodinated [125I]TyrA14-labelled insulin and short (5 min) exposure times, combined with trichloroacetic acid precipitation, to trace intact bioactive insulin. Results : Compared with saline, high concentrations of unlabelled insulin delivered either continuously (insulin clamp) or as a single bolus, significantly raised plasma 125I-labelled insulin, slowed the movement of 125I-labelled insulin from plasma into liver, spleen and heart (p < 0.05, for each) but increased kidney 125I-labelled insulin uptake. High concentrations of unlabelled insulin delivered either continuously (insulin clamp), or as a single bolus, significantly decreased skeletal muscle 125I-labelled insulin clearance (p < 0.01 for each). Increasing muscle perfusion by electrical stimulation did not prevent the inhibitory effect of unlabelled insulin on muscle 125I-labelled insulin clearance. Conclusions/interpretation : These results indicate that insulin's trans-endothelial movement within muscle is a saturable process, which is likely to involve the insulin receptor. Current findings, together with other recent reports, suggest that trans-endothelial insulin transport may be an important site at which muscle insulin action is modulated in clinical and pathological settings.