995 resultados para Laser diode thermal desorption
Resumo:
Dissertation to obtain the degree of Doctor of Philosophy in Biomedical Engineering
Resumo:
Dissertação para obtenção do grau de Mestre em Microbiologia Médica
Resumo:
São propostas novas cavidades de bombeamento para lasers solares do estado sólido de Nd: YAG com o objectivo de melhorar a potência laser de saída e eficiência de bombeamento. São implementados quatro sistemas de guias de onda, um dos sistemas é simétrico e bombeado lateralmente, sendo os restantes três sistemas bombeados lateralmente e pela extremidade. A influência da geometria dos guias de onda no desempenho do bombeamento, o perfil do feixe à saída dos guias e a absorção por parte do cristal de Nd:YAG são optimizados minuciosamente, sendo modelados através do software Zemax. A cavidade de ressonância e as características do feixe são modelados em Lascad. Construíram-se e testaram-se três guias de onda de secção, octogonal, cilíndrica e quadrada. A potência laser multimodo para o sistema ótico bombeado por guia de onda cilíndrica de 20mm de diâmetro e concentrador cónico, foi de 21W, representando uma eficiência de colecção de 11.6W/m2, apresentando um erro de colecção para ΔX=1.3mm de 4.4%.
Resumo:
A ready-mixed and several laboratory formulated mortars were produced and tested in fresh state and after hardening, simulating a masonry plaster for indoor application. All the mortars used a clayish earth from the same region and different compositions of aggregates, eventually including fibres and a phase change material. All the formulated mortars were composed by 1:3 volumetric proportions of earth and aggregate. Tests were developed for consistency, fresh bulk density, thermal conductivity, capillary absorption and drying, water vapour permeability and sorption-desorption. The use of PCM changed drastically the workability of the mortars and increased their capillary absorption. The use of fibres and variations on particle size distribution of the mixtures of sand that were used had no significant influence on tested properties. But particularly the good workability of these mortars and the high capacity of sorption and desorption was highlighted. With this capacity plasters made with these mortars are able to adsorb water vapour from indoor atmosphere when high levels of relative humidity exist and release water vapour when the indoor atmosphere became too dry. This fact makes them able to contribute passively for a healthier indoor environment. The technical, ecological and environmental advantages of the application of plasters with this type of mortars are emphasized, with the aim of contributing for an increased use for new or existent housing.
Resumo:
Due to their high adsorption capacity of water vapor, earthen plasters can act as a moisture buffer, contributing to balance the relative humidity of the indoor environment of buildings. As a consequence of this capacity earthen plasters may also contribute to the perception of thermal comfort, since a high relative humidity increases the thermal conductivity of air and restricts skin evaporation, increasing the discomfort associated with the perception of heat or cold. Simultaneously, earthen plasters may also contribute to the indoor air quality. In one hand, by mitigating health problems of the respiratory system associated with indoor environment with high relative humidity, in which increases the risk of development of microorganisms usually responsible for infections, allergies or asthma. In the other hand, by mitigating the probability of inflammation of the respiratory system airways associated to exceedingly dry indoor environments. Therefore it also becomes expectable that earthen plasters may contribute for reducing the needs for air conditioning and mechanical ventilation in buildings and, thereby, also allowing the reduction of the associated energy consumption. The «Barrocal» region, located in the sedimentary basin of Algarve, South Portugal, presents geomorphological characteristics that promote the occurrence of soils with a clay mineralogy dominated by illite, which is a clay mineral characterized by a high adsorption capacity of water vapor and low expansibility. This fact turns expectable that these soils have a high potential for interior plastering. In order to evaluate this potential four mortars were formulated with an increasing content of clayey soil extracted from a selected clay quarry from «Barrocal» region. The results from the preliminary characterization campaign confirmed the reduced linear shrinkage of these mortars, as well as their high adsorption-desorption capacity, that is positively correlated with the content of clayey soil present in mortar formulation. However, the mechanical tests showed that the mechanical resistance of these mortars should be improved, for instance through the addition of natural fibers for reinforcement, which will be investigated in future research. This research contributed to increase certainty regarding the potential of clayey soils of the «Barrocal» sub-region of Algarve to produce mortars suitable for eco-efficient interior plastering.
Resumo:
High reflective paints (cool paints) are used on flat roofs to reduce heat gains from the incidence of solar radiation and thus improve the thermal comfort and energy efficiency of buildings, especially in summer periods. Given the application potential of these paints on vertical surfaces, a research study has been developed to evaluate the thermal performance of reflective paints on walls under real exposure conditions. Accordingly, different reflective paints have been applied as the final coating of an ETICS type solution, on the facades of a full scale experimental cell built at LNEC campus. For being applied in an ETICS system a paint has to fulfill several requirements, whether aesthetic or functional (such as the adhesion between the coating layers or the durability of the insulation), essential for its efficient performance. Since this construction coating system is subject to a prolonged sun exposure, various problems may arise, such as paint degradation or deterioration of the thermal insulation properties, particularly when dark colors are applied. To evaluate the thermal performance of the chosen paints, the method of non-destructive analysis by Infrared Thermography was used. Thermography allows knowing the temperature distribution of facades by measuring the radiation emitted by their surfaces. To complement the thermographic diagnosis, thermocouples were placed between the insulation and the paint system of the experimental cell. Additional laboratory tests allowed the characterization of the optical properties (reflectance and emittance) of the different reflective paints used in this study. The comparative analysis of the thermal performance of reflective and conventional paints revealed that the reflective paint allows a reduction of the facade surface temperature, reducing the risk of loss of insulating properties of the ETICS system and thus ensuring its longevity and functionality. The color of the paint used affects, naturally, the reflective ability of the surface and may have an important role in energy balance of the building. This paper also showed the potential of infrared thermography in the evaluation of the thermal performance of reflective paints.
Resumo:
O uso do laser de baixa intensidade na supressão de infecções pelos vírus Herpes simplex 1 e 2 foi avaliado após uma a cinco aplicações, sendo observada uma redução gradual na replicação dos vírus Herpes simplex 1 e 2 com 68,4% e 57,3% de inibição, respectivamente, após 5 aplicações, indicando o seu uso clínico.
Resumo:
The main objective of this thesis was the development of a gold nanoparticle-based methodology for detection of DNA adducts as biomarkers, to try and overcome existing drawbacks in currently employed techniques. For this objective to be achieved, the experimental work was divided in three components: sample preparation, method of detection and development of a model for exposure to acrylamide. Different techniques were employed and combined for de-complexation and purification of DNA samples (including ultrasonic energy, nuclease digestion and chromatography), resulting in a complete protocol for sample treatment, prior to detection. The detection of alkylated nucleotides using gold nanoparticles was performed by two distinct methodologies: mass spectrometry and colorimetric detection. In mass spectrometry, gold nanoparticles were employed for laser desorption/ionisation instead of the organic matrix. Identification of nucleotides was possible by fingerprint, however no specific mass signals were denoted when using gold nanoparticles to analyse biological samples. An alternate method using the colorimetric properties of gold nanoparticles was employed for detection. This method inspired in the non-cross-linking assay allowed the identification of glycidamide-guanine adducts and DNA adducts generated in vitro. For the development of a model of exposure, two different aquatic organisms were studies: a goldfish and a mussel. Organisms were exposed to waterborne acrylamide, after which mortality was recorded and effect concentrations were estimated. In goldfish, both genotoxicity and metabolic alterations were assessed and revealed dose-effect relationships of acrylamide. Histopathological alterations were verified primarily in pancreatic cells, but also in hepatocytes. Mussels showed higher effect concentrations than goldfish. Biomarkers of oxidative stress, biotransformation and neurotoxicity were analysed after prolonged exposure, showing mild oxidative stress in mussel cells, and induction of enzymes involved in detoxification of oxygen radicals. A qualitative histopathological screening revealed gonadotoxicity in female mussels, which may present some risk to population equilibrium.
Resumo:
INTRODUÇÃO: Pirajá da Silva fez contribuição magnífica à helmintologia ao descrever ovos de Schistosoma mansoni nas fezes de um paciente, no Estado da Bahia e a morfologia de vermes adultos. MÉTODOS: Neste estudo, apresentamos uma avaliação microscópica das lâminas montadas e depositadas na Coleção Helmintológica do Instituto Oswaldo Cruz. A técnica empregada nesta nova análise foi a microscopia de varredura a laser confocal. RESULTADOS: Na parte anterior dos vermes adultos machos, observamos ventosas com musculatura bem desenvolvida e células germinativas dentro dos lobos testiculares. Visualizamos, também, espinhos localizados na região mediana do canal ginecóforo. Na superfície dorsal, encontramos tubérculos e feixes musculares transversais e longitudinais. Em relação ao aparelho reprodutivo feminino, pudemos distinguir um ovo no interior do útero e o ovário alongado com células germinativas. As glândulas vitelínicas estavam restritas à parte posterior das fêmeas conectadas por um ducto vitelínico curto. CONCLUSÕES: As características morfológicas são similares as estudadas anteriormente por Pirajá da Silva com vermes frescos. Além disso, este estudo demonstra a importância de se depositar espécimes nas coleções helmintológicas abrindo possibilidade de novos estudos com estas lâminas.
Resumo:
Herpes simplex virus types 1 and 2 are the main infectious agents associated with oral and genital ulcerations. These infections are now widely recognized as sexually transmitted diseases. Among treatment options, low-level laser therapy (LLLT) has shown promising clinical results as a longer-lasting suppression therapy. Two clinical cases are described with recurrent labial herpes for which LLLT was used. Following treatment, both patients remained symptom free during the 17-month clinical follow-up period.
Resumo:
The work described in this thesis was performed at the Laboratory for Intense Lasers (L2I) of Instituto Superior Técnico, University of Lisbon (IST-UL). Its main contribution consists in the feasibility study of the broadband dispersive stages for an optical parametric chirped pulse amplifier based on the nonlinear crystal yttrium calcium oxi-borate (YCOB). In particular, the main goal of this work consisted in the characterization and implementation of the several optical devices involved in pulse expansion and compression of the amplified pulses to durations of the order of a few optical cycles (20 fs). This type of laser systems find application in fields such as medicine, telecommunications and machining, which require high energy, ultrashort (sub-100 fs) pulses. The main challenges consisted in the preliminary study of the performance of the broadband amplifier, which is essential for successfully handling pulses with bandwidths exceeding 100 nm when amplified from the μJ to 20 mJ per pulse. In general, the control, manipulation and characterization of optical phenomena on the scale of a few tens of fs and powers that can reach the PW level are extremely difficult and challenging due to the complexity of the phenomena of radiation-matter interaction and their nonlinearities, observed at this time scale and power level. For this purpose the main dispersive components were characterized in detail, specifically addressing the demonstration of pulse expansion and compression. The tested bandwidths are narrower than the final ones, in order to confirm the parameters of these elements and predict the performance for the broadband pulses. The work performed led to additional tasks such as a detailed characterization of laser oscillator seeding the laser chain and the detection and cancelling of additional sources of dispersion.
Resumo:
With the projection of an increasing world population, hand-in-hand with a journey towards a bigger number of developed countries, further demand on basic chemical building blocks, as ethylene and propylene, has to be properly addressed in the next decades. The methanol-to-olefins (MTO) is an interesting reaction to produce those alkenes using coal, gas or alternative sources, like biomass, through syngas as a source for the production of methanol. This technology has been widely applied since 1985 and most of the processes are making use of zeolites as catalysts, particularly ZSM-5. Although its selectivity is not especially biased over light olefins, it resists to a quick deactivation by coke deposition, making it quite attractive when it comes to industrial environments; nevertheless, this is a highly exothermic reaction, which is hard to control and to anticipate problems, such as temperature runaways or hot-spots, inside the catalytic bed. The main focus of this project is to study those temperature effects, by addressing both experimental, where the catalytic performance and the temperature profiles are studied, and modelling fronts, which consists in a five step strategy to predict the weight fractions and activity. The mind-set of catalytic testing is present in all the developed assays. It was verified that the selectivity towards light olefins increases with temperature, although this also leads to a much faster catalyst deactivation. To oppose this effect, experiments were carried using a diluted bed, having been able to increase the catalyst lifetime between 32% and 47%. Additionally, experiments with three thermocouples placed inside the catalytic bed were performed, analysing the deactivation wave and the peaks of temperature throughout the bed. Regeneration was done between consecutive runs and it was concluded that this action can be a powerful means to increase the catalyst lifetime, maintaining a constant selectivity towards light olefins, by losing acid strength in a steam stabilised zeolitic structure. On the other hand, developments on the other approach lead to the construction of a raw basic model, able to predict weight fractions, that should be tuned to be a tool for deactivation and temperature profiles prediction.
Resumo:
Apesar do elevado potencial do metal magnésio como material útil em várias áreas cien-tíficas e tecnológicas, os seus métodos de produção tradicionais têm um impacto fortemente prejudicial no ambiente e um custo elevado. Este facto é um incentivo à procura de novas so-luções, nomeadamente as que recorrem à utilização da radiação solar partindo do óxido de magnésio. Alguns estudos têm já sido feitos nesse sentido, utilizando laser solar ou radiação solar concentrada mas a utilização concertada dos dois não tinha sido feita até ao momento. Neste trabalho, a exequibilidade da utilização concertada destes dois métodos será avaliada e será estudado o comportamento do óxido de magnésio face à radiação que nele incide.
Resumo:
O revestimento com laser permite criar revestimentos localizados pela adição de uma liga similar ou dissimilar. O revestimento visa melhorar as características da superfície metálica, tais como a dureza, a resistência ao desgaste por atrito, à corrosão e à fadiga térmica dos componentes sujeitos a condições adversas de trabalho por prolongados períodos de tempo. Esta dissertação tem como objetivo o melhoramento da configuração, a automatização do sistema de revestimento com laser do Laboratório de Laser do Instituto Superior Técnico (IST) da Universidade de Lisboa, utilizado pelo Centro de Física e Engenharia de Materiais Avançados do Instituto Superior Técnico – CeFEMA e a realização de ensaios de deposições com o fim de validação. Foram estudadas as configurações possíveis para o sistema de posicionamento da amostra, do laser e a configuração para o posicionamento com precisão do bocal de adição de pós ao banho de fusão. Após este estudo foram apresentadas e implementadas as propostas de melhoria do sistema inicial. Para tornar o sistema funcional, foi desenvolvido um controlador para comandar as três guias motorizadas de movimento linear OWIS, o laser IPG YLR e o alimentador de pós PLASMA-TECHNIK. Para simplificar a utilização aos investigadores do CeFEMA foi ainda desenvolvida uma interface gráfica que permite ao utilizador definir os principais parâmetros do processo Para a validação do trabalho desenvolvido foram realizados diversos ensaios de deposição da liga Ti52Ta num substrato de titânio. Através dos ensaios de deposição foi estudada a influência de alguns parâmetros do processo na geometria do revestimento obtido, como a altura, a profundidade, o ângulo do cordão, a diluição entre o material de adição e o substrato, tendo ainda sido estudada a influência dos parâmetros do processo na eficiência de deposição.
Resumo:
An ion emitter consisting of a sharp silver tip covered in RbAg4I5 solid electrolyte film has been developed and studied. An accelerating potential is applied and Ag+ ions are emitted from the tip’s apex by field evaporation. The emitted ions are collected by a Faraday cup, producing a current on the pico/nanoampere level which is read by an electrometer. The tips were produced mechanically by sandpaper polishing. The sharpest tip produced had a 2:4 m apex radius. Two deposition methods were studied: thermal vacuum and pulsed laser deposition. The best tip produced a peak current value of 96nA at 180oC, and a quasi-stable 4nA emission current at 160oC, both using an extraction potential of 10kV . The emission dependence on time, temperature and accelerating potential has been studied. Deposited films were characterized by X-ray diffraction (XRD), profilometry, optical and Scanning Electron Microscope (SEM) and Secondary Ion Mass Spectroscopy (SIMS) measurements. Several ion emitters were developed, the latter ones were all able to maintain stable high ion emissions for long periods of time. This investigation was a continuation of an ongoing project backed by the European Space Agency, with the objective of making a proof of concept of this kind of ion emitter with potential application on ion thrusters for orbiting satellites. Going forward, it would be interesting to make a finer analysis of the electrolyte’s conductivity at high temperatures, explore Wien Effect-based emission and to further develop a multi-tip ion emitter prototype.