1000 resultados para Interactions faibles
Resumo:
As biological invasions continue, interactions occur not only between invaders and natives, but increasingly new invaders come into contact with previous invaders. Whilst this can lead to species replacements, co-existence may occur, but we lack knowledge of processes driving such patterns. Since environmental heterogeneity can determine species richness and co-existence, the present study examines habitat use and its mediation of the predatory interaction between invasive aquatic amphipods, the Ponto-Caspian Dikerogammarus villosus and the N. American Gammarus tigrinus. In the Dutch Lake IJsselmeer, we found broad segregation of D. villosus and G. tigrinus by habitat type, the former predominating in the boulder zone and the latter in the soft sediment. However, the two species co-exist in the boulder zone, both on the short and longer terms. We used an experimental simulation of habitat heterogeneity and show that both species utilize crevices, different sized holes in a plastic grid, non-randomly. These amphipods appear to optimise the use of holes with respect to their 'C-shape' body size. When placed together, D. villosus adults preyed on G. tigrinus adults and juveniles, while G. tigrinus adults preyed on D. villosus juveniles. Juveniles were also predators and both species were cannibalistic. However, the impact on G. tigrinus of the superior intraguild predator, D. villosus, was significantly reduced where experimental grids were present as compared to absent. This mitigation of intraguild predation between the two species in complex habitats may explain the co-existence of these two invasive species.
Resumo:
In attempting to understand the distributions of both introduced species and the native species on which they impact, there is a growing trend to integrate studies of behaviour with more traditional life history/ecological approaches. The question of what mechanisms drive the displacement of the freshwater amphipod Gammarus duebeni by the often introduced G pulex is presented as a case study Patterns of displacement are well documented throughout Europe, but the speed and direction of displacement between these species can be varied. From early studies proposing interspecific competition as causal in these patterns, I review research progress to date. I show there has been no evidence for interspecific competition operating, other than the field patterns themselves, a somewhat tautological argument. Rather, the increased recognition of behavioural attributes with respect to the cannibalistic and predatory nature of these species gave rise to a series of studies unravelling the processes driving field patterns. Both species engage in 'intraguild predation' (IGP), with moulting females particularly vulnerable to predation by congeneric males. G pulex is more able both to engage in and avoid this interaction with G duebeni. However, several factors mediate the strength and asymmetry of this IGP, some biotic (e.g. parasitism) and others abiotic (e.g. water chemistry). Further, a number of alternative hypotheses that may account for the displacement (hybridization; parasite transmission) have been tested and rejected. While interspecific competition has been modelled mathematically and found to be a weak interaction relative to IGP, mechanisms of competition between these Gammarus species remain largely untested empirically. Since IGP may be finely balanced in some circumstances, I conclude that the challenge to detect interspecific competition remains and we require assessment of its role, if any, in the interaction between these species. Appreciation of behavioural attributes and their mediation should allow us to more fully understand, and perhaps predict, species introductions and resultant distributions.
Resumo:
Cannibalism and intraguild predation (IGP) are common amongst freshwater amphipod crustacean aswsemblages, particularly between individuals of different body size, with IGP of smaller by larger species. The decline of Gammarus tigrinus Populations in mainland Europe has been accompanied by the arrival of the Ponto-Caspian invader Dikerogammarus villosus and previous studies have implicated IGP of G. tigrinus by the larger D. villosus as the principal driving force in this replacement. We examined how factors such as microhabitat and body size may mediate both cannibalism within G. tigrinus populations and IGP by D. villosus and thus contribute to field patterns of coexistence and exclusion. A field Survey of an invaded Dutch fake indicated that G. tigrinus and D. villosus differed in distribution. with D. villosus being the numerically dominant amphipod (80-96 %) on the rocky boulder Substrate of the shoreline and G. tigrinus being the dominant amphipod (100 %) in the crushed shell/sand matrix immediately adjacent to this. Laboratory microcosm experiments indicated that G. tigrinus cannibalism, particularly of smaller by larger size classes, may be common. In addition, although D. villosus predation of all G. tigrinus size classes was extreme, the smallest size classes Suffered the highest predation. Indeed, when exposed to D. villosus, predation of larger G. tigrinus was lowest when smaller G. tigrinus were also present. Increasing microhabitat complexity from a simple bare substrate littered with Dreissena polymorpha zebra mussels to a Crushed shell/sand matrix significantly reduced both cannibalism and IGP. Our Study emphasizes the need to consider both life history stages and habitat template, when considering the impacts of biotic interactions and it also emphasizes that complex, interacting factors may be mediating the range expansion of D. villosus.
Resumo:
An attempt to improve the food base for brown trout Salmo trutta in Northern Ireland was made in 1958.59 by deliberately introducing English Gammarus pulex into several Irish rivers. In addition. another amphipod Crangonyx pseudogracilis, was later accidently introduced into II ish waters. Our study represents the first attempt to examine the trophic interactions between a native fish predator (S. trutta) and an array of these native (Gammarus duebeni celticus) and introduced (G. pulex and C. pseudogracilis) amphipods. Feeding experiments, involving young brown trout predators and ampiphod prey, revealed that the fish actively selected C. pseudogracilis relative to two alternative Gammarus prey species. Although the trout encountered the Gammarus species more than C. pseudogracilis, they were eaten less than Crangonyx. Difficulties in handling and ingestion of Gammarus by trout may be a. key component of the preference fbr the smaller, more easily handled Crangonyx. The microdistribution of the species was altered by the fish, due to predation being greater in particular microhabitats, Our study showed that the introduction of the herbivorous C. pseudogracilis into Irish freshwaters may represent a useful addition to fish diets. particularly for small and/or juvenile fish. The reprecussions of the deliberate introduction of G. pulex are less clear. It may improve feeding for fish. but only if it can coexist with indigenous macroinvertebrates and thus ultimately improve the range and quantity of possible food items in predator diets. Alternatively, being highly predatory towards other macroinvertebrates including G. d. celticus and C. pseudogracilis. G. pulex may be deleterious to the diversity of the resident benthic community and hence reduce the diversity of prey available to fish predators.
Resumo:
Intraguild predation (IGP) between invasive and native species can lead to species exclusions or co-existence, dependent on the direction and strength of the interaction. Recently, derivation of 'functional responses' has been identified as a means of comparing the community impacts of invasive and native species. Here, we employ a novel use of this functional response methodology to evaluate any IGP asymmetries between the invasive Ponto-Caspian amphipod Echinogammarus ischnus and the North American native Gammarus fasciatus. The direction and magnitude of intraguild predation of adult males on hetero-specific adult females has previously been shown to reverse across a water conductivity gradient. This partially explains field patterns, but does not predict the co-existence of the two species observed in many habitats and locations. Here, we compared intraguild predation by both species on each other's juveniles in high- and low- conductivity water. G. fasciatus has a higher type II functional response towards E. ischnus juveniles compared to the reciprocal interaction. Conductivity did not influence the predation rate on juveniles of either E. ischnus or G. fasciatus. Thus, the male/female IGP advantage to the native G. fasciatus in low conductivity water is compounded by a juvenile IGP asymmetry, which also counteracts the male/female IGP advantage to E. ischnus in high conductivity waters, helping to explain field patterns of exclusion and co-existence. Thus, complex asymmetries in mutual IGP associated with inherent species differences, environmental modulation, and life-history effects can help us understand and predict the population and community level outcomes of species invasions.
Resumo:
A split-EGFP based bimolecular fluorescence complementation (BiFC) assay has been used to detect interactions between the Saccharomyces cerevisiae cytoskeletal scaffolding protein Iqg1p and three targets: myosin essential light chain (Mlc1p), calmodulin (Cmd1p) and the small GTPase Cdc42p. The format of the BiFC assay used ensures that the proteins are expressed at wild type levels thereby avoiding artefacts due to overexpression. This is the first direct in vivo detection of these interactions; in each case, the complex is localised to discrete regions of the yeast cytoplasm. The labelling with EGFP fragments results in changes in growth kinetics, cell size and budding frequency. This is partly due to the reassembled EGFP locking the complexes into essentially permanent interactions. The consequences of this for Iqg1p interactions and BiFC assays in general are discussed. (c) 2008 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.
Resumo:
Introduction of the invasive Asian cyprinid fish Pseudorasbora parva into a 0.3 ha pond in England with a fish assemblage that included Cyprinus carpio, Rutilus rutilus and Scardinius erythrophthalmus resulted in their establishment of a numerically dominant population in only 2 years; density estimates exceeded 60 ind. m(-2) and they comprised > 99% of fish present. Stable isotope analysis (SIA) revealed significant trophic overlap between P. parva, R. rutilus and C. carpio, a shift associated with significantly depressed somatic growth in R. rutilus. Despite these changes, fish community composition remained similar between the ponds. Comparison with SIA values collected from an adjacent pond free of P. parva revealed a simplified food web in P. parva presence, but with an apparent trophic position shift for several fishes, including S. erythrophthalmus which appeared to assimilate energy at a higher trophic level, probably through P. parva consumption. The marked isotopic shifts shown in all taxa in the P. parva invaded pond (C-13-enriched, N-15 depleted) were indicative of a shift to a cyanobacteria-dominated phytoplankton community. These findings provide an increased understanding of the ecological consequences of the ongoing P. parva invasion of European freshwater ecosystems.
Resumo:
Purpose: A non-synonymous single nucleotide polymorphism ( SNP) in complement component 3 has been shown to increase the risk of age-related macular degeneration (AMD). We assess its effect on AMD risk in a Northern Irish sample, test for gene-gene and gene-environment interaction, and review a risk prediction model.
Resumo:
This paper is a review of low-energy positron interactions with atoms and molecules. Processes of interest include elastic scattering, electronic and vibrational excitation, ionization, positronium formation and annihilation. An overview is presented of the currently available theoretical and experimental techniques to study these phenomena, including the use of trap-based positron beam sources to study collision processes with improved energy resolution. State-resolved measurements of electronic and vibrational excitation cross sections and measurement of annihilation rates in atoms and molecules as a function of incident positron energy are discussed. Where data are available, comparisons are made with analogous electron scattering cross sections. Resonance phenomena, common in electron scattering, appear to be less common in positron scattering. Possible exceptions include the sharp onsets of positron-impact electronic and vibrational excitation of selected molecules. Recent energy-resolved studies of positron annihilation in hydrocarbons containing more than a few carbon atoms provide direct evidence that vibrational Feshbach resonances underpin the anomalously large annihilation rates observed for many polyatomic species. We discuss open questions regarding this process in larger molecules, as well as positron annihilation in smaller molecules where the theoretical picture is less clear.
Resumo:
This article presents an overview of current understanding of the interaction of low-energy positrons with molecules with emphasis on resonances, positron attachment, and annihilation. Measurements of annihilation rates resolved as a function of positron energy reveal the presence of vibrational Feshbach resonances (VFRs) for many polyatomic molecules. These resonances lead to strong enhancement of the annihilation rates. They also provide evidence that positrons bind to many molecular species. A quantitative theory of VFR-mediated attachment to small molecules is presented. It is tested successfully for selected molecule (e.g., methyl halides and methanol) where all modes couple to the positron continuum. Combination and overtone resonances are observed and their role is elucidated. Molecules that do not bind positrons and hence do not exhibit such resonances are discussed. In larger molecules, annihilation rates from VFR far exceed those explicable on the basis of single-mode resonances. These enhancements increase rapidly with the number of vibrational degrees of freedom, approximately as the fourth power of the number of atoms in the molecule. While the details are as yet unclear, intramolecular vibrational energy redistributio (IVR) to states that do not couple directly to the positron continuum appears to be responsible for these enhanced annihilation rates. In connection with IVR, experimental evidence indicates that inelastic positron escape channels are relatively rare. Downshifts of the VFR from the vibrational mode energies, obtained by measuring annihilate rates as a function of incident positron energy, have provided binding energies for 30 species. Their dependence upon molecular parameters and their relationship to positron-atom and positron-molecule binding-energy calculations are discussed. Feshbach resonances and positron binding to molecules are compared with the analogous electron-molecul (negative-ion) cases. The relationship of VFR-mediated annihilation to other phenomena such as Doppler broadening of the gamma-ray annihilation spectra, annihilation of thermalized positrons in gases, and annihilation-induced fragmentation of molecules is discussed. Possible areas for future theoretical and experimental investigation are also discussed.