1000 resultados para Infrared testing
Resumo:
Glycopolymer hydrogels capable of mimicking mucosal tissue in mucoadhesion testing have been designed. Liquid formulations containing mucoadhesive polymers were found to be retained on these tissues to the same extent as ex vivo gastric mucosa, when using a dynamic method of assessing mucoadhesion.
Resumo:
According to the weak central coherence (CC) account individuals with autism spectrum disorders (ASD) exhibit enhanced local processing and weak part-whole integration. CC was investigated in the verbal domain. Adolescents, recruited using a 2 (ASD status) by 2 (language impairment status) design, completed an aural forced choice comprehension task involving syntactically ambiguous sentences. Half the picture targets depicted the least plausible interpretation, resulting in longer RTs across groups. These were assumed to reflect local processing. There was no ASD by plausibility interaction and consequently little evidence for weak CC in the verbal domain when conceptualised as enhanced local processing. Furthermore, there was little evidence that the processing of syntactically ambiguous sentences differed as a function of ASD or language-impairment status.
Resumo:
Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs’ usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and flower availability. Additionally, testing SDMs with field surveys should involve multiple collection techniques.
Resumo:
To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl–DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium.
Resumo:
There has been an ongoing concern about the lack of reliable data on disabled children in schools. To date there has been no consistent way of identifying and categorising disabilities. Schools in England are currentlyrequired to collect data on children with Special Educational Need (SEN), but this does not capture information about all disabled children. The lack of this information may seriously restrict capacity at all levels of policy and practice to understand and respond to the needs of disabled children and their families in line with Disability Discrimination Act (2005) and the single Equality Act (2010). The aim of the project was to test the draft tools for identifying disability and accompanying guidance in a sample of all types of maintained schools in order to assess their usability and reliability and whether they resulted in the generation of robust and consistent data that could reliably inform school returns for the annual School Census.
Resumo:
This paper shows that radiometer channel radiances for cloudy atmospheric conditions can be simulated with an optimised frequency grid derived under clear-sky conditions. A new clear-sky optimised grid is derived for AVHRR channel 5 ð12 m m, 833 cm �1 Þ. For HIRS channel 11 ð7:33 m m, 1364 cm �1 Þ and AVHRR channel 5, radiative transfer simulations using an optimised frequency grid are compared with simulations using a reference grid, where the optimised grid has roughly 100–1000 times less frequencies than the full grid. The root mean square error between the optimised and the reference simulation is found to be less than 0.3 K for both comparisons, with the magnitude of the bias less than 0.03 K. The simulations have been carried out with the radiative transfer model Atmospheric Radiative Transfer Simulator (ARTS), version 2, using a backward Monte Carlo module for the treatment of clouds. With this module, the optimised simulations are more than 10 times faster than the reference simulations. Although the number of photons is the same, the smaller number of frequencies reduces the overhead for preparing the optical properties for each frequency. With deterministic scattering solvers, the relative decrease in runtime would be even more. The results allow for new radiative transfer applications, such as the development of new retrievals, because it becomes much quicker to carry out a large number of simulations. The conclusions are applicable to any downlooking infrared radiometer.
Resumo:
The theory of evolution by sexual selection for sexual size dimorphism (SSD) postulates that SSD primarily reflects the adaptation of males and females to their different reproductive roles. For example, competition among males for access to females increases male body size because larger males are better able to maintain dominant status than smaller males. Larger dominant males sire most offspring while smaller subordinate males are unsuccessful, leading to skew in reproductive success. Therefore, species with male-biased SSD are predicted to have greater variance in male reproductive success than those in which both sexes are similar in size. We tested this prediction among the Pinnipedia, a mammalian group with a great variation in SSD. From a literature review, we identified genetic estimates of male reproductive success for 10 pinniped taxa (eight unique species and two subspecies of a ninth species) that range from seals with similarly sized males and females to species in which males are more than four times as large as females. We found no support for a positive relationship between variance in reproductive success and SSD among pinnipeds after excluding the elephant seals Mirounga leonina and Mirounga angustirostris, which we discuss as distinctive cases. Several explanations for these results are presented, including the revival of one of Darwin's original ideas. Darwin proposed that natural selection may explain SSD based on differences in energetic requirements between sexes and the potential for sexual niche segregation. Males may develop larger bodies to exploit resources that remain unavailable to females due to the energetic constraints imposed on female mammals by gestation and lactation. The importance of this alternative explanation remains to be tested.
Resumo:
The [Ru(phen)2(dppz)]2+ complex (1) is non-emissive in water but is highly luminescent in organic solvents or when bound to DNA, making it a useful probe for DNA binding. To date, a complete mechanistic explanation for this “light-switch” effect is still lacking. With this in mind we have undertaken an ultrafast time resolved infrared (TRIR) study of 1 and directly observe marker bands between 1280–1450 cm-1, which characterise both the emissive “bright” and the non-emissive “dark” excited states of the complex, in CD3CN and D2O respectively. These characteristic spectral features are present in the [Ru(dppz)3]2+ solvent light-switch complex but absent in [Ru(phen)3]2+, which is luminescent in both solvents. DFT calculations show that the vibrational modes responsible for these characteristic bands are predominantly localised on the dppz ligand. Moreover, they reveal that certain vibrational modes of the “dark” excited state couple with vibrational modes of two coordinating water molecules, and through these to the bulk solvent, thus providing a new insight into the mechanism of the light-switch effect. We also demonstrate that the marker bands for the “bright” state are observed for both L- and D enantiomers of 1 when bound to DNA and that photo-excitation of the complex induces perturbation of the guanine and cytosine carbonyl bands. This perturbation is shown to be stronger for the L enantiomer, demonstrating the different binding site properties of the two enantiomers and the ability of this technique to determine the identity and nature of the binding site of such intercalators.
Resumo:
Accurate knowledge of ice-production rates within the marginal ice zones of the Arctic Ocean requires monitoring of the thin-ice distribution within polynyas. The thickness of the ice layer controls the heat loss and hence the new-ice formation. An established thinice algorithm using high-resolution MODIS data allows deriving the ice-thickness distribution within polynyas. The average uncertainty is ±4.7 cm for ice thicknesses below 0.2 m. In this study, the ice-thickness distributions within the Laptev Sea polynya for the two winter seasons 2007/08 and 2008/09 are calculated. Then, a new method is applied to determine a daily MODIS thin-ice product.
Resumo:
We test the ability of a two-dimensional flux model to simulate polynya events with narrow open-water zones by comparing model results to ice-thickness and ice-production estimates derived from thermal infrared Moderate Resolution Imaging Spectroradiometer (MODIS) observations in conjunction with an atmospheric dataset. Given a polynya boundary and an atmospheric dataset, the model correctly reproduces the shape of an 11 day long event, using only a few simple conservation laws. Ice production is slightly overestimated by the model, owing to an underestimated ice thickness. We achieved best model results with the consolidation thickness parameterization developed by Biggs and others (2000). Observed regional discrepancies between model and satellite estimates might be a consequence of the missing representation of the dynamic of the thin-ice thickening (e.g. rafting). We conclude that this simplified polynya model is a valuable tool for studying polynya dynamics and estimating associated fluxes of single polynya events.
Resumo:
UV-generated excited states of cytosine (C) nucleobases are precursors to mutagenic photoproduct formation. The i-motif formed from C-rich sequences is known to exhibit high yields of long-lived excited states following UV absorption. Here the excited states of several i-motif structures have been characterized following 267 nm laser excitation using time-resolved infrared spectroscopy (TRIR). All structures possess a long-lived excited state of ~300 ps and notably in some cases decays greater than 1 ns are observed. These unusually long-lived lifetimes are attributed to the interdigitated DNA structure which prevents direct base stacking overlap.
Resumo:
Early establishment of endophytes can play a role in pathogen suppression and improve seedling development. One route for establishment of endophytes in seedlings is transmission of bacteria from the parent plant to the seedling via the seed. In wheat seeds, it is not clear whether this transmission route exists, and the identities and location of bacteria within wheat seeds are unknown. We identified bacteria in the wheat (Triticum aestivum) cv. Hereward seed environment using embryo excision to determine the location of the bacterial load. Axenic wheat seedlings obtained with this method were subsequently used to screen a putative endophyte bacterial isolate library for endophytic competency. This absence of bacteria recovered from seeds indicated low bacterial abundance and/or the presence of inhibitors. Diversity of readily culturable bacteria in seeds was low with 8 genera identified, dominated by Erwinia and Paenibacillus. We propose that anatomical restrictions in wheat limit embryo associated vertical transmission, and that bacterial load is carried in the seed coat, crease tissue and endosperm. This finding facilitates the creation of axenic wheat plants to test competency of putative endophytes and also provides a platform for endophyte competition, plant growth, and gene expression studies without an indigenous bacterial background.
Resumo:
Spectroscopic catalogues, such as GEISA and HITRAN, do not yet include information on the water vapour continuum that pervades visible, infrared and microwave spectral regions. This is partly because, in some spectral regions, there are rather few laboratory measurements in conditions close to those in the Earth’s atmosphere; hence understanding of the characteristics of the continuum absorption is still emerging. This is particularly so in the near-infrared and visible, where there has been renewed interest and activity in recent years. In this paper we present a critical review focusing on recent laboratory measurements in two near-infrared window regions (centred on 4700 and 6300 cm−1) and include reference to the window centred on 2600 cm−1 where more measurements have been reported. The rather few available measurements, have used Fourier transform spectroscopy (FTS), cavity ring down spectroscopy, optical-feedback – cavity enhanced laser spectroscopy and, in very narrow regions, calorimetric interferometry. These systems have different advantages and disadvantages. Fourier Transform Spectroscopy can measure the continuum across both these and neighbouring windows; by contrast, the cavity laser techniques are limited to fewer wavenumbers, but have a much higher inherent sensitivity. The available results present a diverse view of the characteristics of continuum absorption, with differences in continuum strength exceeding a factor of 10 in the cores of these windows. In individual windows, the temperature dependence of the water vapour self-continuum differs significantly in the few sets of measurements that allow an analysis. The available data also indicate that the temperature dependence differs significantly between different near-infrared windows. These pioneering measurements provide an impetus for further measurements. Improvements and/or extensions in existing techniques would aid progress to a full characterisation of the continuum – as an example, we report pilot measurements of the water vapour self-continuum using a supercontinuum laser source coupled to an FTS. Such improvements, as well as additional measurements and analyses in other laboratories, would enable the inclusion of the water vapour continuum in future spectroscopic databases, and therefore allow for a more reliable forward modelling of the radiative properties of the atmosphere. It would also allow a more confident assessment of different theoretical descriptions of the underlying cause or causes of continuum absorption.
Resumo:
The primary objective of this research study is to determine which form of testing, the PEST algorithm or an operator-controlled condition is most accurate and time efficient for administration of the gaze stabilization test