994 resultados para Hydrogen Isotope


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic absorption coefficients for ethylamine in heavy water (D2O) and in light water (H2O) have been measured in the frequency range from 0.8 to 220 MHz at 25 degrees C. A single relaxational process has been observed in these two kinds of solutions. From the concentration dependence of the ultrasonic relaxation parameters, and following the reaction mechanism proposed by Eigen et al. for ethylamine in H2O, the causes of the relaxations have been attributed to a perturbation of an equilibrium associated with a deuteron or proton transfer reaction. The rate and equilibrium constants have been estimated from deuterioxide or hydroxide ion concentration dependence of the relaxation frequency, and the kinetic isotope effects have been determined. In addition, the standard volume changes of the reactions have been calculated from the concentration dependence of the maximum absorption per wavelength, and the adiabatic compressibility has also been determined from the density and sound velocity for ethylamine in D2O and in H2O, respectively. These results are compared with those for propylamine and butylamine and are discussed in relation to the different kinetic properties between D2O and H2O, the reaction radii derived by Debye theory, and the structural properties of the reaction intermediate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic absorption coefficients were measured for butylamine in heavy water (D2O) in the frequency range from 0.8 to 220 MHz and at concentrations from 0.0278 to 2.5170 mol dm(-3) at 25 degrees C; two kinds of relaxation processes were observed. One was found in relatively dilute solutions (up to 0.5 mol dm(-3)), which was attributed to the hydrolysis of butylamine. In order to compare the results, absorption measurements were also carried out in light water (H2O). The rate and thermodynamic parameters were determined from the concentration dependence of the relaxation frequency and the maximum absorption per wavelength. The isotope effects on the diffusion-controlled reaction were estimated and the stability of the intermediate of the hydrolysis was considered while comparing it with the results for propylamine in H2O and D2O. Another relaxation process was observed at concentrations greater than 1 mol dm(-3) in D2O. In order to examine the solution characteristics, proton NMR measurements for butylamine were also carried out in D2O. The chemical shifts for the gamma- and delta-proton in butylamine molecule indicate the existence of an aggregate. From profiles of the concentration dependence of the relaxation frequency and the maximum absorption per wavelength of sound absorption, the source of the relaxation was attributed to an association-dissociation reaction, perhaps, associated with a hydrophobic interaction. The aggregation number, the forward and reverse rate constants and the standard volume change of the reaction were determined. It was concluded from a comparison with the results in H2O that the hydrophobic interaction of butylamine in D2O is stronger than that in H2O. Also, the isotope effect on this reaction was interpreted in terms of the solvent structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The infrared spect ra of N-n-(4-nitrophenyl)azophenyloxyalkyldiethanolamines (Cn) are examined in the range of 4000-400 cm(-1) at different temperatures and the assignment of the fundamental vibrations given. Based on (1) the localization of the broad absorption band at 3456 cm(-1), and (2) attribution of the associated OH bands centred at 1410-1390, 1100, and 650-634 cm(-1) to, respectively delta OH deformation, nu C-O stretching and gamma OH out-of-plane bending, intermolecular hydrogen bonding between OH groups in the crystalline, liquid crystalline and isotropic states is proposed. By considering the results of FTIR, WAXD and DSC measurements, the molecular arrangement of C10 in its smectic A phase as consisting of hydrogen bonding and strong interaction between dipolar groups (NO,) is proposed. This may explain the high stability and high orientational ordering property of Cn compounds in the liquid crystalline state compared with that of n-bromo-1-[4-(4-nitrophenyl)azophenyl]oxyalkanes (Bn).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propylamine has been selected to investigate the isotope effect of a fast deuteron transfer reaction by ultrasonic relaxation method. Ultrasonic absorption coefficients of propylamine in heavy water (D2O) at 25 degrees C in the concentration range from 0.0107 to 0.6300 mol dm(-3) have been measured by pulse and resonance methods over the frequency range from 0.8 to 220 MHz. A Debye-type single relaxation absorption has been observed in the solution. From the dependence of the ultrasonic relaxation parameters on the concentration and solution pH, the source of the observed relaxation has been attributed to a perturbation of the chemical equilibrium associated with the deuteron transfer reaction. The rate and equilibrium constants have been determined by the measurement of the deuteroxyl ion concentration dependence of the relaxation frequency. Also the standard volume change of the reaction has been determined from the concentration dependence of the maximum absorption per wavelength and the adiabatic compressibility has been calculated from the density and the sound velocity in the solution. These results have then been compared with those obtained for propylamine in light water (H2O). The forward rate constant is greater and the reverse rate constant is smaller in DO than in H2O. The standard volume change for deuteron transfer is greater than that for proton transfer reaction, and the adiabatic compressibility shows a similar trend. These data support an argument that there exists a stronger hydrogen bond in D2O than in H2O. The difference of the stability in the intermediate states, R-ND3+... OD- and R-NH3+... OH-, has also been considered from the results of the isotope effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An acid-stable soybean-peroxidase biosensor was devel oped by immobilizing the enzyme in a sol-gel thin film. Methylene blue was used as a mediator because of its high electron-transfer efficiency. The sol-gel thin film and enzyme membrane were characterized by FT-IR, and the effects of pH, operating potential, and temperature were explored for optimum analytical performance by using the amperometric method. The H2O2 sensor exhibited a fast response (5 s), high sensitivity (27.5 mu A/mM), as well as good thermostability and long-term stability. In addition, the performance of the biosensor was investigated using flow-injection analysis (FIA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel functionalized inorganic-organic hybrid material with cation exchange property was prepared by sol-gel method. The H2O2 biosensor was fabricated by simply dipping the horseradish peroxidase-containing functionalized membrane modified electrode into Meldola's blue (MDB) solution. MDB was adsorbed and firmly immobilized within the membrane. The electrochemical behavior of MDB incorporated in the membrane was more reversible compared with that of the solution species and suitable as mediator for the horseradish peroxidase. The response time was less than 25 s. Linear range is up to 0.6 mM (COH. coeff. 0.9998) with detection Limit of 9 x 10(-7) M. High sensitivity of 75 nA mu M cm(-2) was obtained due to high MDB-loading. The biosensor exhibited a good stability. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work probes the role of hydrogen bonds (such as O-H ... O and N-H ... O) in some inorganic nonlinear optical (NLO) crystals, such as HIO3, NH4H2PO4 (ADP), K[B5O6(OH)(4)] . 2H(2)O (KB5) and K2La(NO3)(5) . 2H(2)O (KLN), from the chemical bond standpoint. Second order NLO behaviors of these four typical inorganic crystals have been quantitatively studied, results show hydrogen bonds play a very important role in NLO contributions to the total nonlinearity. Conclusions derived here concerning the effect of hydrogen bonds on optical nonlinearities of inorganic crystals have important implications with regard to the utilization of hydrogen bonds in the structural design of inorganic NLO crystals. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(A) novel chemiluminescence (CL) system was evaluated for the determination of hydrogen peroxide, glucose and ascorbic acid based on hydrogen peroxide, which has a catalytic-cooxidative effect on the oxidation of luminol by KIO4. Hydrogen peroxide can be directly determined by luminol-KIO4 -H2O2 CL system. The detection limit was 3.0 x 10(-8) mol l(-1) and the calibration graph was linear over the range of 2.0 x 10(-7)-6.0 x 10(-4) mol l(-1). The relative standard deviation of H2O2 was 1.1% for 2.0 x 10(-6) mol l(-1) (N = 11). Glucose was indirectly determined through measuring the H2O2 generated by the oxidation of glucose in the presence of glucose oxidase at pH 7.6. The present method provides a source for H2O2, which, in turn, coupled with the luminol-KIO4-H2O2 CL reaction system. The CL was linearly correlated with glucose concentration of 0.6-110 mu g ml(-1). The relative standard deviation was 2.1% for 10 mu g ml(-1) (N = 11). Detection limit of glucose was 0.08 mu g ml(-1). Ascorbic acid was also indirectly determined by the suppression of luminol-KIO4-H2O2 CL system. The calibration curve was linear over the range of 1.0 x 10(-7)-1.0 x 10(-5) mol l(-1) of ascorbic acid. The relative standard deviation was 1.0% for 8.0 x 10(-7) mol l(-1) (N = 11). Detection limit of ascorbic acid was 6.0 x 10(=8) mol l(-1). These proposed methods have been applied to determine glucose, ascorbic acid in tablets and injection. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cytochrome c and hydrogen peroxide-dependent oxidation of m-aminophenol was investigated by electrochemistry and spectrophotometry. The results indicated that the hydroxylated species of m-aminophenol have at least two conjugated substituted groups on the ring system (most possibly, its oxidized form 2-hydroxy-4-iminoquinone), and that the degradation of cytochrome c by hydrogen peroxide can also be prevented in the presence of m-aminophenol. The hydroxyl radical scavengers, mannitol and sodium benzoate, almost completely eliminate the hydroxylation of m-aminophenol. But oxo-heme species scavenger, uric acid, does not inhibit the hydroxylation. Combining the results of mass spectrum, nuclear magnetic resonance and element analysis with that of spectrophotometry, electrochemistry and chemical scavengers, it is suggested that cytochrome c may act as a peroxidase, which facilitates the hydroxylation and subsequent dimerization of m-aminophenol. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite membrane modified electrodes were prepared by electrochemical deposition of platinum particles in a poly(o-phenylenediamine) (PPD) him coated on glassy carbon (GC) electrodes. The modified electrodes showed high catalytic activity towards the reduction of oxygen and hydrogen peroxide. A four-electron transfer process predominated the reduction process. The pH dependence and the stability of the electrodes were also studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction of hydrogen peroxide with cytochrome c makes them coupled to lead to the hydroxylation of 4-nitrophenol. In situ electrochemical probe was used to detect the hydroxylation of 4-nitrophenol, which can avoid the tedious extraction procedure, the loss of the active species and the interference of some colored substances in the detection of 4-nitrocatechol by spectroscopic method. The hydroxyl radical scavengers mannitol and sodium benzoate did not eliminate hydroxylation, but the inhibitory effect of uric acid on the hydroxylation lead to the formation of the ferryl species of the protein during the reaction. These studies suggest that the electrochemical probe might efficiently detect the trace 4-nitrocatechol from the onset of the hydroxylation reaction and thus provides a more sensitive tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SmCl3, reacted with CpNa (Cp = Cyclopentadienyl) in the ratio of 1:3 in THF, which then was reacted with (S)-(+)-N-1-(phenylethyl) salicylideneamine/toluene to yield the title complex, [GRAPHICS] The X-ray crystal structure determination of the title complex reveals that 1 is a dimer with intramolecular C-C bond formation and hydrogen transfer, which leads to the configuration turnover of the carbon atom at the benzyl position of the ligand, while those of the newly formed asymmetric centers may have either Ii or S type configurations. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NdCl3 reacts with excess CpNa (Cp=Cyclopentadienyl) in THF, followed by sequent treatment with (S)-(+)-N-(1-phenylethyl)salicylideneamine led to the formation of title compound, [GRAPHICS] The X-ray structure determination shows that it is a dimer with internal C-C bond formation and hydrogen transfer between one of Cp ring and the C=N bond of Schiff base ligand. (C) 1997 Elsevier Science S.A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrotalcite-like compounds containing carbonate ion as the interlayer anion were prepared by coprecipitation under low supersaturation condition by mixing an aqueous solution of metal nitrates with an aqueous solutions of NaOH and Na2CO3, at room temperature, maintaining pH = 8-10 with vigorous stirring, Following the mixing, the resulting heavy slurry was aged at 353 K for 18 h with vigorous stirring, The precipitate was then filtered, washed several times with hot distilled water and dried in air at 353 K overnight, In this way, CuMI AlCO3-HTLcs and M-I AlCO3-HTLcs were synthesized and characterized by means of XRD and IR, The catalysis of the above mentioned HTLcs were investigated in the phenol hydroxylation with H2O2. The results indicated that all of the copper-containing HTLcs had a higher catalytic activity in the reaction, However, those catalysts that did not contain copper had no catalytic activity in this reaction, This means that copper was the active center in the phenol hydroxylation. Meanwhile, the mechanism was also proposed, which could be used to explain the main reason for higher activity for CuCuAlCO3-HTLcs in the phenol hydroxylation and the effect of Mg2+, Zn2+, Co2+, Ni2+ on activity of CuMI AlCO3-HTLcs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative polymerization of aniline in the presence of H2O2/Fe2+/HCl was carried out, and polyaniline obtained showed similar molecular structure compared to that prepared in (NH4)(2)S2O8 system.