999 resultados para HVAC engineering
Resumo:
This handbook was prepared for external examiners and for use in training workshops for newly appointed external examiners.
Resumo:
The proposed research will focus on developing a novel approach to solve Software Service Evolution problems in Computing Clouds. The approach will support dynamic evolution of the software service in clouds via a set of discovered evolution patterns. An initial survey informed us that such an approach does not exist yet and is in urgent need. Evolution Requirement can be classified into evolution features; researchers can describe the whole requirement by using evolution feature typology, the typology will define the relation and dependency between each features. After the evolution feature typology has been constructed, evolution model will be created to make the evolution more specific. Aspect oriented approach can be used for enhance evolution feature-model modularity. Aspect template code generation technique will be used for model transformation in the end. Product Line Engineering contains all the essential components for driving the whole evolution process.
Resumo:
V. Robinson, N. W. Hardy, D. P. Barnes, C. J. Price, M. H. Lee. Experiences with a knowledge engineering toolkit: an assessment in industrial robotics. Knowledge Engineering Review, 2 (1):43-54, 1987.
Resumo:
N. W. Hardy, M. H. Lee, and D. P. Barnes. Knowledge engineering in robot control. In Proceedings of Expert Systems '83, pages 70-77, Cambridge, 1983.
Resumo:
Lee M.H., Model-Based Reasoning: A Principled Approach for Software Engineering, Software - Concepts and Tools,19(4), pp179-189, 2000.
Resumo:
Lee M.H., Qualitative Modelling of Linear Networks in Engineering Applications, in Proc. ECAI?2000, 14th European Conf. on Artificial Intelligence, Berlin, August 19th - 25th 2000, pp161-5.
Resumo:
Draper, J., Darby, R.M., Beckmann, M., Maddison, A.L., Mondhe, M., Sheldrick, C., Taylor, J., Goodacre, R., and Kell, D.B. (2002) Metabolic Engineering, metabolite profiling and machine learning to investigate the phloem-mobile signal in systemic acquired resistance in tobacco. First International Congress on Plant Metabolomics, Wageningen, The Netherlands
Resumo:
Wilson, M.S. and Neal, M.J., 'Diminishing Returns of Engineering Effort in Telerobotic Systems', IEEE Transactions on Systems, Man and Cybernetics - Part A:Systems and Humans, 2001, September, volume 31, number 5, pp 459-465, IEEE Robotics and Automation Society, ed. Dautenhahn,K., Special Issue on Socially Intelligent Agents - The Human in the Loop
Resumo:
IEEE Transactions on Knowledge and Data Engineering, vol. 15, no. 5, pp. 1338-1343, 2003.
Resumo:
Roberts, O. (2006). Developing the untapped wealth of Britain's ?Celtic fringe?: water engineering and the Welsh landscape, 1870-1960. Landscape Research. 31(2), pp.121-133. RAE2008
Resumo:
The emergence of a sensor-networked world produces a clear and urgent need for well-planned, safe and secure software engineering. It is the role of universities to prepare graduates with the knowledge and experience to enter the work-force with a clear understanding of software design and its application to the future safety of computing. The snBench (Sensor Network WorkBench) project aims to provide support to the programming and deployment of Sensor Network Applications, enabling shared sensor embedded spaces to be easily tasked with various sensory applications by different users for simultaneous execution. In this report we discus our experience using the snBench research project as the foundation for semester-long project in a graduate level software engineering class at Boston University (CS511).
Resumo:
This thesis is focused on the design and synthesis of a diverse range of novel organosulfur compounds (sulfides, sulfoxides and sulfones), with the objective of studying their solid state properties and thereby developing an understanding of how the molecular structure of the compounds impacts upon their solid state crystalline structure. In particular, robust intermolecular interactions which determine the overall structure were investigated. These synthons were then exploited in the development of a molecular switch. Chapter One provides a brief overview of crystal engineering, the key hydrogen bonding interactions utilized in this work and also a general insight into “molecular machines” reported in the literature of relevance to this work. Chapter Two outlines the design and synthetic strategies for the development of two scaffolds suitable for incorporation of terminal alkynes, organosulfur and ether functionalities, in order to investigate the robustness and predictability of the S=O•••H-C≡C- and S=O•••H-C(α) supramolecular synthons. Crystal structures and a detailed analysis of the hydrogen bond interactions observed in these compounds are included in this chapter. Also the biological activities of four novel tertiary amines are discussed. Chapter Three focuses on the design and synthesis of diphenylacetylene compounds bearing amide and sulfur functionalities, and the exploitation of the N-H•••O=S interactions to develop a “molecular switch”. The crystal structures, hydrogen bonding patterns observed, NMR variable temperature studies and computer modelling studies are discussed in detail. Chapter Four provides the overall conclusions from chapter two and chapter three and also gives an indication of how the results of this work may be developed in the future. Chapter Five contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project, while details of the NCI (National Cancer Institute) biological test results are included in the appendix.
Resumo:
In this thesis I theoretically study quantum states of ultracold atoms. The majority of the Chapters focus on engineering specific quantum states of single atoms with high fidelity in experimentally realistic systems. In the sixth Chapter, I investigate the stability and dynamics of new multidimensional solitonic states that can be created in inhomogeneous atomic Bose-Einstein condensates. In Chapter three I present two papers in which I demonstrate how the coherent tunnelling by adiabatic passage (CTAP) process can be implemented in an experimentally realistic atom chip system, to coherently transfer the centre-of-mass of a single atom between two spatially distinct magnetic waveguides. In these works I also utilise GPU (Graphics Processing Unit) computing which offers a significant performance increase in the numerical simulation of the Schrödinger equation. In Chapter four I investigate the CTAP process for a linear arrangement of radio frequency traps where the centre-of-mass of both, single atoms and clouds of interacting atoms, can be coherently controlled. In Chapter five I present a theoretical study of adiabatic radio frequency potentials where I use Floquet theory to more accurately model situations where frequencies are close and/or field amplitudes are large. I also show how one can create highly versatile 2D adiabatic radio frequency potentials using multiple radio frequency fields with arbitrary field orientation and demonstrate their utility by simulating the creation of ring vortex solitons. In the sixth Chapter I discuss the stability and dynamics of a family of multidimensional solitonic states created in harmonically confined Bose-Einstein condensates. I demonstrate that these solitonic states have interesting dynamical instabilities, where a continuous collapse and revival of the initial state occurs. Through Bogoliubov analysis, I determine the modes responsible for the observed instabilities of each solitonic state and also extract information related to the time at which instability can be observed.
Resumo:
Diminishing non-renewable energy resources and planet-wide de-pollution on our planet are among the major problems which mankind faces into the future. To solve these problems, renewable energy sources such as readily available and inexhaustible sunlight will have to be used. There are however no readily available photocatalysts that are photocatalytically active under visible light; it is well established that the band gap of the prototypical photocatalyst, titanium dioxide, is the UV region with the consequence that only 4% of sun light is utilized. For this reason, this PhD project focused on developing new materials, based on titanium dioxide, which can be used in visible light activated photocatalytic hydrogen production and destruction of pollutant molecules. The main goal of this project is to use simulations based on first principles to engineer and understand rationally, materials based on modifying TiO2 that will have the following properties: (1) a suitable band gap in order to increase the efficiency of visible light absorption, with a gap around 2 – 2.5 eV considered optimum. (2). The second key aspect in the photocatalytic process is electron and hole separation after photoexcitation, which enable oxidation/reduction reactions necessary to i.e. decompose pollutants. (3) Enhanced activity over unmodified TiO2. In this thesis I present results on new materials based on modifying TiO2 with supported metal oxide nanoclusters, from two classes, namely: transition metal oxides (Ti, Ni, Cu) and p-block metal oxides (Sn, Pb, Bi). We find that the deposited metal oxide nanoclusters are stable at rutile and anatase TiO2 surfaces and present an analysis of changes to the band gap of TiO2, identifying those modifiers that can change the band gap to the desirable range and the origin of this. A successful collaboration with experimental researchers in Japan confirms many of the simulation results where the origin of improved visible light photocatalytic activity of oxide nanocluster-modified TiO2 is now well understood. The work presented in this thesis, creates a road map for the design of materials with desired photocatalytic properties and contributes to better understanding these properties which are of great application in renewable energy utilization.
Resumo:
The contribution of buildings towards total worldwide energy consumption in developed countries is between 20% and 40%. Heating Ventilation and Air Conditioning (HVAC), and more specifically Air Handling Units (AHUs) energy consumption accounts on average for 40% of a typical medical device manufacturing or pharmaceutical facility’s energy consumption. Studies have indicated that 20 – 30% energy savings are achievable by recommissioning HVAC systems, and more specifically AHU operations, to rectify faulty operation. Automated Fault Detection and Diagnosis (AFDD) is a process concerned with potentially partially or fully automating the commissioning process through the detection of faults. An expert system is a knowledge-based system, which employs Artificial Intelligence (AI) methods to replicate the knowledge of a human subject matter expert, in a particular field, such as engineering, medicine, finance and marketing, to name a few. This thesis details the research and development work undertaken in the development and testing of a new AFDD expert system for AHUs which can be installed in minimal set up time on a large cross section of AHU types in a building management system vendor neutral manner. Both simulated and extensive field testing was undertaken against a widely available and industry known expert set of rules known as the Air Handling Unit Performance Assessment Rules (APAR) (and a later more developed version known as APAR_extended) in order to prove its effectiveness. Specifically, in tests against a dataset of 52 simulated faults, this new AFDD expert system identified all 52 derived issues whereas the APAR ruleset identified just 10. In tests using actual field data from 5 operating AHUs in 4 manufacturing facilities, the newly developed AFDD expert system for AHUs was shown to identify four individual fault case categories that the APAR method did not, as well as showing improvements made in the area of fault diagnosis.