995 resultados para Gaze imaging tracking
Resumo:
The aim of the present study was to evaluate the role of magnetic resonance imaging (MRI) for the non-invasive detection of coronary abnormalities and specifically the remodeling process in patients with coronary artery disease (CAD). MRI was performed in 10 control healthy subjects and 26 patients with angiographically proven CAD of the right coronary (RCA) or left anterior descending (LAD) artery; 23 patients were within two months of acute coronary syndromes, and 3 had stable angina with a positive test for ischemia. Wall thickness (WT), vessel wall area (VWA), total vessel area (TVA), and luminal area (LA) were measured. There were significant increases in WT (mean ± SEM, RCA: 2.62 ± 0.75 vs 0.53 ± 0.15 mm; LAD: 2.21 ± 0.69 vs 0.62 ± 0.24 mm) and in VWA (RCA: 30.96 ± 17.57 vs 2.1 ± 1.2 mm²; LAD: 19.53 ± 7.25 vs 3.6 ± 2.0 mm²) patients compared to controls (P < 0.001 for each variable). TVA values were also greater in patients compared to controls (RCA: 44.56 ± 21.87 vs 12.3 ± 4.2 mm²; LAD: 31.89 ± 11.31 vs 17.0 ± 6.2 mm²; P < 0.001). In contrast, the LA did not differ between patients and controls for RCA or LAD. When the LA was adjusted for vessel size using the LA/TVA ratio, a significant difference was found: 0.33 ± 0.16 in patients vs 0.82 ± 0.09 in controls (RCA) and 0.38 ± 0.13 vs 0.78 ± 0.06 (LAD) (P < 0.001). As opposed to normal controls, positive remodeling was present in all patients with CAD, as indicated by larger VWA. We conclude that MRI detected vessel wall abnormalities and was an effective tool for the noninvasive evaluation of the atherosclerotic process and coronary vessel wall modifications, including positive remodeling that frequently occurs in patients with acute coronary syndromes.
Resumo:
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system CNS), where inflammation and neurodegeneration lead to irreversible neuronal damage. In MS, a dysfunctional immune system causes auto‐reactive lymphocytes to migrate into CNS where they initiate an inflammatory cascade leading to focal demyelination, axonal degeneration and neuronal loss. One of the hallmarks of neuronal injury and neuroinflammation is the activation of microglia. Activated microglia are found not only in the focal inflammatory lesions, but also diffusely in the normal‐appearing white matter (NAWM), especially in progressive MS. The purine base, adenosine is a ubiquitous neuromodulator in the CNS and also participates in the regulation of inflammation. The effect of adenosine mediated via adenosine A2A receptors has been linked to microglial activation, whereas modulating A2A receptors may exert neuroprotective effects. In the majority of patients, MS presents with a relapsing disease course, later advancing to a progressive phase characterised by a worsening, irreversible disability. Disease modifying treatments can reduce the severity and progression in relapsing MS, but no efficient treatment exists for progressive MS. The aim of this research was to investigate the prevalence of adenosine A2A receptors and activated microglia in progressive MS by using in vivo positron emission tomography (PET) imaging and [11C]TMSX and [11C](R)‐PK11195 radioligands. Magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI) was performed to evaluate structural brain damage. Non‐invasive input function methods were also developed for the analyses of [11C]TMSX PET data. Finally, histopathological correlates of [11C](R)‐PK11195 radioligand binding related to chronic MS lesions were investigated in post‐mortem samples of progressive MS brain using autoradiography and immunohistochemistry. [11C]TMSX binding to A2A receptors was increased in NAWM of secondary progressive MS (SPMS) patients when compared to healthy controls, and this correlated to more severe atrophy in MRI and white matter disintegration (reduced fractional anisotropy, FA) in DTI. The non‐invasive input function methods appeared as feasible options for brain [11C]TMSX images obviating arterial blood sampling. [11C](R)‐PK11195 uptake was increased in the NAWM of SPMS patients when compared to patients with relapsing MS and healthy controls. Higher [11C](R)‐PK11195 binding in NAWM and total perilesional area of T1 hypointense lesions was associated with more severe clinical disability, increased brain atrophy, higher lesion load and reduced FA in NAWM in the MS patients. In autoradiography, increased perilesional [11C](R)‐PK11195 uptake was associated with increased microglial activation identified using immunohistochemistry. In conclusion, brain [11C]TMSX PET imaging holds promise in the evaluation of diffuse neuroinflammation in progressive MS. Being a marker of microglial activation, [11C](R)‐ PK11195 PET imaging could possibly be used as a surrogate biomarker in the evaluation of the neuroinflammatory burden and clinical disease severity in progressive MS.
Resumo:
Coronary artery disease is an atherosclerotic disease, which leads to narrowing of coronary arteries, deteriorated myocardial blood flow and myocardial ischaemia. In acute myocardial infarction, a prolonged period of myocardial ischaemia leads to myocardial necrosis. Necrotic myocardium is replaced with scar tissue. Myocardial infarction results in various changes in cardiac structure and function over time that results in “adverse remodelling”. This remodelling may result in a progressive worsening of cardiac function and development of chronic heart failure. In this thesis, we developed and validated three different large animal models of coronary artery disease, myocardial ischaemia and infarction for translational studies. In the first study the coronary artery disease model had both induced diabetes and hypercholesterolemia. In the second study myocardial ischaemia and infarction were caused by a surgical method and in the third study by catheterisation. For model characterisation, we used non-invasive positron emission tomography (PET) methods for measurement of myocardial perfusion, oxidative metabolism and glucose utilisation. Additionally, cardiac function was measured by echocardiography and computed tomography. To study the metabolic changes that occur during atherosclerosis, a hypercholesterolemic and diabetic model was used with [18F] fluorodeoxyglucose ([18F]FDG) PET-imaging technology. Coronary occlusion models were used to evaluate metabolic and structural changes in the heart and the cardioprotective effects of levosimendan during post-infarction cardiac remodelling. Large animal models were used in testing of novel radiopharmaceuticals for myocardial perfusion imaging. In the coronary artery disease model, we observed atherosclerotic lesions that were associated with focally increased [18F]FDG uptake. In heart failure models, chronic myocardial infarction led to the worsening of systolic function, cardiac remodelling and decreased efficiency of cardiac pumping function. Levosimendan therapy reduced post-infarction myocardial infarct size and improved cardiac function. The novel 68Ga-labeled radiopharmaceuticals tested in this study were not successful for the determination of myocardial blood flow. In conclusion, diabetes and hypercholesterolemia lead to the development of early phase atherosclerotic lesions. Coronary artery occlusion produced considerable myocardial ischaemia and later infarction following myocardial remodelling. The experimental models evaluated in these studies will enable further studies concerning disease mechanisms, new radiopharmaceuticals and interventions in coronary artery disease and heart failure.
Resumo:
Since the times preceding the Second World War the subject of aircraft tracking has been a core interest to both military and non-military aviation. During subsequent years both technology and configuration of the radars allowed the users to deploy it in numerous fields, such as over-the-horizon radar, ballistic missile early warning systems or forward scatter fences. The latter one was arranged in a bistatic configuration. The bistatic radar has continuously re-emerged over the last eighty years for its intriguing capabilities and challenging configuration and formulation. The bistatic radar arrangement is used as the basis of all the analyzes presented in this work. The aircraft tracking method of VHF Doppler-only information, developed in the first part of this study, is solely based on Doppler frequency readings in relation to time instances of their appearance. The corresponding inverse problem is solved by utilising a multistatic radar scenario with two receivers and one transmitter and using their frequency readings as a base for aircraft trajectory estimation. The quality of the resulting trajectory is then compared with ground-truth information based on ADS-B data. The second part of the study deals with the developement of a method for instantaneous Doppler curve extraction from within a VHF time-frequency representation of the transmitted signal, with a three receivers and one transmitter configuration, based on a priori knowledge of the probability density function of the first order derivative of the Doppler shift, and on a system of blocks for identifying, classifying and predicting the Doppler signal. The extraction capabilities of this set-up are tested with a recorded TV signal and simulated synthetic spectrograms. Further analyzes are devoted to more comprehensive testing of the capabilities of the extraction method. Besides testing the method, the classification of aircraft is performed on the extracted Bistatic Radar Cross Section profiles and the correlation between them for different types of aircraft. In order to properly estimate the profiles, the ADS-B aircraft location information is adjusted based on extracted Doppler frequency and then used for Bistatic Radar Cross Section estimation. The classification is based on seven types of aircraft grouped by their size into three classes.
Resumo:
Single-photon emission computed tomography (SPECT) is a non-invasive imaging technique, which provides information reporting the functional states of tissues. SPECT imaging has been used as a diagnostic tool in several human disorders and can be used in animal models of diseases for physiopathological, genomic and drug discovery studies. However, most of the experimental models used in research involve rodents, which are at least one order of magnitude smaller in linear dimensions than man. Consequently, images of targets obtained with conventional gamma-cameras and collimators have poor spatial resolution and statistical quality. We review the methodological approaches developed in recent years in order to obtain images of small targets with good spatial resolution and sensitivity. Multipinhole, coded mask- and slit-based collimators are presented as alternative approaches to improve image quality. In combination with appropriate decoding algorithms, these collimators permit a significant reduction of the time needed to register the projections used to make 3-D representations of the volumetric distribution of target’s radiotracers. Simultaneously, they can be used to minimize artifacts and blurring arising when single pinhole collimators are used. Representation images are presented, which illustrate the use of these collimators. We also comment on the use of coded masks to attain tomographic resolution with a single projection, as discussed by some investigators since their introduction to obtain near-field images. We conclude this review by showing that the use of appropriate hardware and software tools adapted to conventional gamma-cameras can be of great help in obtaining relevant functional information in experiments using small animals.
Resumo:
The aim of this study was to determine if bone marrow mononuclear cell (BMMC) transplantation is safe for moderate to severe idiopathic dilated cardiomyopathy (IDC). Clinical trials have shown that this procedure is safe and effective for ischemic patients, but little information is available regarding non-ischemic patients. Twenty-four patients with IDC, optimized therapy, age 46 ± 11.6 years, 17 males, NYHA classes II-IV, and left ventricular ejection fraction <35% were enrolled in the study. Clinical evaluation at baseline and 6 months after stem cell therapy to assess heart function included echocardiogram, magnetic resonance imaging, cardiopulmonary test, Minnesota Quality of Life Questionnaire, and NYHA classification. After cell transplantation 1 patient showed a transient increase in enzyme levels and 2 patients presented arrhythmias that were reversed within 72 h. Four patients died during follow-up, between 6 and 12 weeks after therapy. Clinical evaluation showed improvement in most patients as reflected by statistically significant decreases in Minnesota Quality of Life Questionnaire (63 ± 17.9 baseline vs 28.8 ± 16.75 at 6 months) and in class III-IV NYHA patients (18/24 baseline vs 2/20 at 6 months). Cardiopulmonary exercise tests demonstrated increased peak oxygen consumption (12.2 ± 2.4 at baseline vs 15.8 ± 7.1 mL·kg-1·min-1 at 6 months) and walked distance (377.2 ± 85.4 vs 444.1 ± 77.9 m at 6 months) in the 6-min walk test, which was not accompanied by increased left ventricular ejection fraction. Our findings indicate that BMMC therapy in IDC patients with severe ventricular dysfunction is feasible and that larger, randomized and placebo-controlled trials are warranted.
Resumo:
The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target’s three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology.
Resumo:
The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.
Resumo:
Optical coherence tomography (OCT) is a promising medical imaging technique that uses light to capture real-time cross-sectional images from biological tissues in micrometer resolution. Commercially available optical coherence tomography systems are employed in diverse applications, including art conservation and diagnostic medicine, notably in cardiology and ophthalmology. Application of this technology in the brain may enable distinction between white matter and gray matter, and obtainment of detailed images from within the encephalon. We present, herein, the in vivo implementation of OCT imaging in the rat brain striatum. For this, two male 60-day-old rats (Rattus norvegicus, Albinus variation, Wistar) were stereotactically implanted with guide cannulas into the striatum to guide a 2.7-French diameter high-definition OCT imaging catheter (Dragonfly™, St. Jude Medical, USA). Obtained images were compared with corresponding histologically stained sections to collect imaging samples. A brief analysis of OCT technology and its current applications is also reported, as well as intra-cerebral OCT feasibility on brain mapping during neurosurgical procedures.
Resumo:
We investigated the diagnostic value of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of magnetic resonance diffusion tensor imaging (DTI) in patients with spinal cord compression (SCC) using a meta-analysis framework. Multiple scientific literature databases were exhaustively searched to identify articles relevant to this study. Mean values and standardized mean differences (SMDs) were calculated for the ADC and FA in normal and diseased tissues. The STATA version 12.0 software was used for statistical analysis. Of the 41 articles initially retrieved through database searches, 11 case-control studies were eligible for the meta-analysis and contained a combined total of 645 human subjects (394 patients with SCC and 251 healthy controls). All 11 studies reported data on FA, and 9 contained data related to the ADC. The combined SMDs of the ADC and FA showed that the ADC was significantly higher and the FA was lower in patients with SCC than in healthy controls. Subgroup analysis based on the b value showed higher ADCs in patients with SCC than in healthy controls at b values of both ≤500 and >500 s/mm2. In summary, the main findings of this meta-analysis revealed an increased ADC and decreased FA in patients with SCC, indicating that DTI is an important diagnostic imaging tool to assess patients suspected to have SCC.
Resumo:
Many industrial applications need object recognition and tracking capabilities. The algorithms developed for those purposes are computationally expensive. Yet ,real time performance, high accuracy and small power consumption are essential measures of the system. When all these requirements are combined, hardware acceleration of these algorithms becomes a feasible solution. The purpose of this study is to analyze the current state of these hardware acceleration solutions, which algorithms have been implemented in hardware and what modifications have been done in order to adapt these algorithms to hardware.
Resumo:
This study reviews the research on interaction techniques and methods that could be applied in mobile augmented reality scenarios. The review is focused on themost recent advances and considers especially the use of head-mounted displays. Inthe review process, we have followed a systematic approach, which makes the reviewtransparent, repeatable, and less prone to human errors than if it was conducted in amore traditional manner. The main research subjects covered in the review are headorientation and gaze-tracking, gestures and body part-tracking, and multimodality– as far as the subjects are related to human-computer interaction. Besides these,also a number of other areas of interest will be discussed.
Resumo:
In this paper, we review the advances of monocular model-based tracking for last ten years period until 2014. In 2005, Lepetit, et. al, [19] reviewed the status of monocular model based rigid body tracking. Since then, direct 3D tracking has become quite popular research area, but monocular model-based tracking should still not be forgotten. We mainly focus on tracking, which could be applied to aug- mented reality, but also some other applications are covered. Given the wide subject area this paper tries to give a broad view on the research that has been conducted, giving the reader an introduction to the different disciplines that are tightly related to model-based tracking. The work has been conducted by searching through well known academic search databases in a systematic manner, and by selecting certain publications for closer examination. We analyze the results by dividing the found papers into different categories by their way of implementation. The issues which have not yet been solved are discussed. We also discuss on emerging model-based methods such as fusing different types of features and region-based pose estimation which could show the way for future research in this subject.