984 resultados para GENERALIZED THEORY
Resumo:
In this paper, several known computational solutions are readily obtained in a very natural way for the linear regulator, fixed end-point and servo-mechanism problems using a certain frame-work from scattering theory. The relationships between the solutions to the linear regulator problem with different terminal costs and the interplay between the forward and backward equations have enabled a concise derivation of the partitioned equations, the forward-backward equations, and Chandrasekhar equations for the problem. These methods have been extended to the fixed end-point, servo, and tracking problems.
Resumo:
A generalized enthalpy update scheme is presented for evaluating solid and liquid fractions during the solidification of binary alloys, taking solid movement into consideration. A fixed-grid, enthalpy-based method is developed such that the scheme accounts for equilibrium as well as for nonequilibrium solidification phenomena, along with solid phase movement. The effect of solid movement on the solidification interface shape and macrosegregation is highlighted.
Resumo:
The paper proposes a study of symmetrical and related components, based on the theory of linear vector spaces. Using the concept of equivalence, the transformation matrixes of Clarke, Kimbark, Concordia, Boyajian and Koga are shown to be column equivalent to Fortescue's symmetrical-component transformation matrix. With a constraint on power, criteria are presented for the choice of bases for voltage and current vector spaces. In particular, it is shown that, for power invariance, either the same orthonormal (self-reciprocal) basis must be chosen for both voltage and current vector spaces, or the basis of one must be chosen to be reciprocal to that of the other. The original �¿, ��, 0 components of Clarke are modified to achieve power invariance. For machine analysis, it is shown that invariant transformations lead to reciprocal mutual inductances between the equivalent circuits. The relative merits of the various components are discussed.
Resumo:
The generalized Reed-Muller expansions of a switching function are generated using a single Boolean matrix and step-by-step shifting of the principal column.
Resumo:
Abstract | In this article the shuffling of cards is studied by using the concept of a group action. We use some fundamental results in Elementary Number Theory to obtain formulas for the orders of some special shufflings, namely the Faro and Monge shufflings and give necessary and sufficient conditions for the Monge shuffling to be a cycle. In the final section we extend the considerations to the shuffling of multisets.
Resumo:
In this article we review classical and modern Galois theory with historical evolution and prove a criterion of Galois for solvability of an irreducible separable polynomial of prime degree over an arbitrary field k and give many illustrative examples.
Resumo:
The eigenvalues and eigenfunctions corresponding to the three-dimensional equations for the linear elastic equilibrium of a clamped plate of thickness 2ϵ, are shown to converge (in a specific sense) to the eigenvalues and eigenfunctions of the well-known two-dimensional biharmonic operator of plate theory, as ϵ approaches zero. In the process, it is found in particular that the displacements and stresses are indeed of the specific forms usually assumed a priori in the literature. It is also shown that the limit eigenvalues and eigenfunctions can be equivalently characterized as the leading terms in an asymptotic expansion of the three-dimensional solutions, in terms of powers of ϵ. The method presented here applies equally well to the stationary problem of linear plate theory, as shown elsewhere by P. Destuynder.
Resumo:
This article presents the buckling analysis of orthotropic nanoplates such as graphene using the two-variable refined plate theory and nonlocal small-scale effects. The two-variable refined plate theory takes account of transverse shear effects and parabolic distribution of the transverse shear strains through the thickness of the plate, hence it is unnecessary to use shear correction factors. Nonlocal governing equations of motion for the monolayer graphene are derived from the principle of virtual displacements. The closed-form solution for buckling load of a simply supported rectangular orthotropic nanoplate subjected to in-plane loading has been obtained by using the Navier's method. Numerical results obtained by the present theory are compared with first-order shear deformation theory for various shear correction factors. It has been proven that the nondimensional buckling load of the orthotropic nanoplate is always smaller than that of the isotropic nanoplate. It is also shown that small-scale effects contribute significantly to the mechanical behavior of orthotropic graphene sheets and cannot be neglected. Further, buckling load decreases with the increase of the nonlocal scale parameter value. The effects of the mode number, compression ratio and aspect ratio on the buckling load of the orthotropic nanoplate are also captured and discussed in detail. The results presented in this work may provide useful guidance for design and development of orthotropic graphene based nanodevices that make use of the buckling properties of orthotropic nanoplates.