985 resultados para Flow-mediated Dilation
Resumo:
BACKGROUND AND OBJECTIVES: Microparticles (MPs) are small phospholipid vesicles of less than 1 microm, shed in blood flow by various cell types. These MPs are involved in several biological processes and diseases. MPs have also been detected in blood products; however, their role in transfused patients is unknown. The purpose of this study was to characterize those MPs in blood bank conditions. MATERIALS AND METHODS: Qualitative and quantitative experiments using flow cytometry or proteomic techniques were performed on MPs derived from erythrocytes concentrates. In order to count MPs, they were either isolated by various centrifugation procedures or counted directly in erythrocyte concentrates. RESULTS: A 20-fold increase after 50 days of storage at 4 degrees C was observed (from 3370 +/- 1180 MPs/microl at day 5 to 64 850 +/- 37 800 MPs/microl at day 50). Proteomic analysis revealed changes of protein expression comparing MPs to erythrocyte membranes. Finally, the expression of Rh blood group antigens was shown on MPs generated during erythrocyte storage. CONCLUSIONS: Our work provides evidence that storage of red blood cell is associated with the generation of MPs characterized by particular proteomic profiles. These results contribute to fundamental knowledge of transfused blood products.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are essential in glucose and lipid metabolism and are implicated in metabolic disorders predisposing to atherosclerosis, such as diabetes and dyslipidemia. Conversely, antidiabetic glitazones and hypolipidemic fibrate drugs, known as PPARgamma and PPARalpha ligands, respectively, reduce the process of atherosclerotic lesion formation, which involves chronic immunoinflammatory processes. Major histocompatibility complex class II (MHC-II) molecules, expressed on the surface of specialized cells, are directly involved in the activation of T lymphocytes and in the control of the immune response. Interestingly, expression of MHC-II has recently been observed in atherosclerotic plaques, and it can be induced by the proinflammatory cytokine interferon-gamma (IFN-gamma) in vascular cells. To explore a possible role for PPAR ligands in the regulation of the immune response, we investigated whether PPAR activation affects MHC-II expression in atheroma-associated cells. In the present study, we demonstrate that PPARgamma but not PPARalpha ligands act as inhibitors of IFN-gamma-induced MHC-II expression and thus as repressors of MHC-II-mediated T-cell activation. All different types of PPARgamma ligands tested inhibit MHC-II. This effect of PPARgamma ligands is due to a specific inhibition of promoter IV of CIITA and does not concern constitutive expression of MHC-II. Thus, the beneficial effects of antidiabetic PPARgamma activators on atherosclerotic plaque development may be partly explained by their repression of MHC-II expression and subsequent inhibition of T-lymphocyte activation.
Resumo:
Objective: The vascular access steal syndrome is a complication occurring in 1-6% after native arterio-venous (AV) fistulas, often due to huge diameter of the vein. This results in very high flow, which could also be responsible for cardiac overload. The aim of this study is to evaluate the efficiency of a new approach in the treatment of this pathology using open-pore external scaffolding prosthesis.Methods: This a retrospective review of all patients presenting symptomatic high flow after native AV fistula between January 2007 and December 2009 in 3 vascular centers. Pre-operative duplex exam confirmed the diagnosis of high flow. The operation consisted in preparation of the whole fistula, measurement of the flow and section on the venous side. The vein was wrapped with this 6 to 8 mm open-pore external scaffolding prosthesis (ProVena, BBraun, Germany) according to its diameter and to the flow and then sutured. Measurement of the flow was repeated. Patients were followed by duplex exam at 1 week and at 1, 3, 6 and 12 months. Procedural success was defined as complete implantation of the prosthesis and reduction of the flow. Primary outcomes were reduction of the flow and recovery of the symptoms and secondary endpoint was patency of the fistula.Results: During the study period, 14 patients, with a mean age of 65・8 years old, have been operated with this technique.There were 2 native forearmfistulas and 12 on the armwith a mean pre-operative flow of 2600 ml/min (1800-3800). The mode of presentation was pain in 6 patients, neurological disorders in 10 and necrosis in 4. Moreover, 3 patients had cardiac insufficiency due to high flow in the fistula. The procedure was technically successful in 100% of cases. Re-intervention was necessary in 2 patients due to hematoma. Recovery of the initial symptoms occurred in 13 patients (93%). The mean flow reduction was 1200 ml/min (600-2000). In 1 patient, a persistent steal syndrome despite flow reduction to 1400 ml/min resulted in fistula closure 2 months later. At a mean follow-up of 22 months (4-35), all remaining patients (13/14) presented a patent fistula without recurrence.Conclusion: This new approach seems to be safe and effective in the treatment of symptomatic high flow native AV fistulas by significantly reducing the flow and avoiding closure of the vascular access. Longer follow-up with more patients are necessary to evaluate the risk of recurrence.
Resumo:
In heart transplantation (HTx), acute antibody-mediated rejection (AMR) is infrequent but carries high mortality and increased risk of graft vasculopathy. The diagnosis requires evidence of acute graft dysfunction, capillary lesions on endomyocardial biopsy (EMB), and immunopathological criteria of antibodymediated injury. Multiple markers of antibody-mediated injuries have been proposed, but there is ample debate on their usefulness. In kidney transplantation, C4d deposition in peritubular capillaries is a reliable marker of alloantibody-dependant graft injury. In this study, we prospectively screened all EMBs for C4d and CD68 in new HTx recipients, and correlated pathological fi ndings with immunological evidence of donor-specifi c antibodies (DSA) and graft dysfunction. Methods Between Nov 05 and Aug 08, we had 22 HTx, and 17 cases were analysed. All recipients received polyclonal rabbit anti-thymocytes globulin, calcineurin inhibitors, mycophenolate mofetil, and corticosteroids (weaning in 6 -12 months). They had EMB every 1-2 weeks in the fi rst 3 months, and then monthly for 9 months. C4d and CD 68 were assessed by immunochemistry. Echocardiography and DSA assessment or crossmatch (early phase) were realised if C4d or CD68 staining was positive. Results There was 1 early and 1 late AMR. Table 1 C4d and CD68 positive, at least 1 EMB 6 / 17; 35% 1 treated C4d and CD68 positive, at least 2 consecutive EMBs 3 / 17; 17.5% 1 treated C4d and CD68 positive, and graft dysfunction 1 / 17; 6% 1 treated C4d and CD68 positive, with DSA and crossmatch + 1 / 17; 6% 1 treated Table 2 C4d and CD68 positive, at least 1 EMB 1 / 17; 6% 1 treated C4d and CD68 positive, at least 2 consecutive EMBs 1 /17; 6% 1 treated C4d and CD68 positive and graft dysfunction 1 / 17; 6% 1 treated C4d and CD68 positive, and + DSA 1 / 17; 6% 1 treated Conclusion In this single-center experience, C4d / CD68 positive staining was frequent in the early phase and raised the question of false positive cases of AMR. However, these markers showed high specifi city for the diagnosis of AMR in the late phase. Of course these data need to be confi rmed in larger multi-center studies.
Resumo:
Flow cytometry (FCM) is emerging as an important tool in environmental microbiology. Although flow cytometry applications have to date largely been restricted to certain specialized fields of microbiology, such as the bacterial cell cycle and marine phytoplankton communities, technical advances in instrumentation and methodology are leading to its increased popularity and extending its range of applications. Here we will focus on a number of recent flow cytometry developments important for addressing questions in environmental microbiology. These include (i) the study of microbial physiology under environmentally relevant conditions, (ii) new methods to identify active microbial populations and to isolate previously uncultured microorganisms, and (iii) the development of high-throughput autofluorescence bioreporter assays
Resumo:
Cape Verde, off the coast of Senegal in western Africa, is a volcanic archipelago where soil and water conservation techniques play an important role in the overall subsistence of half a million inhabitants. In fact, the step slopes in the more agricultural islands due to it's volcanic origin, together with semi-arid and arid environments (the country is located in the Sahelian region), characterized by a very irregular wet season, with high intensity rainfall events, make life tough. The hard conditions lead during the first half of the XX century to frequent cycles of drought with severe implications on the local populations, with impressive numbers of deaths by famine, and a decrease of the number of local inhabitants by more than halve in some islands. Maintain the soil in place and the water inside the soil was there after a mater of survival, and the CapeVerdians implemented over the last half century a number of soil and water conservation techniques that cover all the landscape. In this work, we monitored a number of slope soil and water conservation techniques, such as terraces, half moons, live barriers, etc, together with two cultural strategies, used to plant corn and beans on one side and peanuts on the other, with a semi-quantitative methodology, to evaluate their effectiveness. A discussion is given on the costs and effectiveness of the techniques to reduce overland flow production and therefore erosion, and to promote rainfall infiltration.
Resumo:
Treatment of B cell lymphoma patients with MoAbs specific for the common B cell marker (CD20) has shown a good overall response rate, but the number of complete remissions is still very low. The use of MoAbs coupled to radioisotopes can improve the results, but induces undesirable myelodepression. As an alternative, we proposed to combine the specificity of MoAbs with the immunogenicity of T cell epitopes. We have previously shown that an anti-Ig lambda MoAb coupled to an MHC class II-restricted universal T cell epitope peptide P2 derived from tetanus toxin induces efficient lysis of a human B cell lymphoma by a specific CD4+ T cell line. Here we demonstrate that the antigen presentation properties of the MoAb peptide conjugate are maintained using a MoAb directed against a common B cell marker, CD19, which is known to be co-internalized with the B cell immunoglobulin receptor. In addition, we provide evidence that B cell lysis is mediated by the Fas apoptosis pathway, since Fas (CD95), but not tumour necrosis factor receptor (TNFr) or TNF-related receptors, is expressed by the target B cells, and FasL, but not perforin, is expressed by the effector T cells. These results show that B cell lymphomas can be 'foreignized' by MoAb-peptide P2 conjugates directed against the common B cell marker CD19 and eliminated by peptide P2-specific CD4+ T cells, via the ubiquitous Fas receptor. This approach, which bridges the specificity of passive antibody therapy with an active T cell immune response, may be complementary to and more efficient than the present therapy results with unconjugated chimeric anti-CD20 MoAbs.
Resumo:
Vibrio vulnificus and Vibrio cholerae are Gram-negative pathogens that cause serious infectious disease in humans. The beta form of pro-IL-1 is thought to be involved in inflammatory responses and disease development during infection with these pathogens, but the mechanism of beta form of pro-IL-1 production remains poorly defined. In this study, we demonstrate that infection of mouse macrophages with two pathogenic Vibrio triggers the activation of caspase-1 via the NLRP3 inflammasome. Activation of the NLRP3 inflammasome was mediated by hemolysins and multifunctional repeat-in-toxins produced by the pathogenic bacteria. NLRP3 activation in response to V. vulnificus infection required NF-kappaB activation, which was mediated via TLR signaling. V. cholerae-induced NLRP3 activation also required NF-kappaB activation but was independent of TLR stimulation. Studies with purified V. cholerae hemolysin revealed that toxin-stimulated NLRP3 activation was induced by TLR and nucleotide-binding oligomerization domain 1/2 ligand-mediated NF-kappaB activation. Our results identify the NLRP3 inflammasome as a sensor of Vibrio infections through the action of bacterial cytotoxins and differential activation of innate signaling pathways acting upstream of NF-kappaB.
Resumo:
Partial cleavage of p120 RasGAP by caspase-3 in stressed cells generates an N-terminal fragment, called fragment N, which activates an anti-apoptotic Akt-dependent survival response. Akt regulates several effectors but which of these mediate fragment N-dependent cell protection has not been defined yet. Here we have investigated the role of mTORC1, Bad, and survivin in the capacity of fragment N to protect cells from apoptosis. Neither rapamycin, an inhibitor of mTORC1, nor silencing of raptor, a subunit of the mTORC1 complex, altered the ability of fragment N from inhibiting cisplatin- and Fas ligand-induced death. Cells lacking Bad, despite displaying a stronger resistance to apoptosis, were still protected by fragment N against cisplatin-induced death. Fragment N was also able to protect cells from Fas ligand-induced death in conditions where Bad plays no role in apoptosis regulation. Fragment N expression in cells did neither modulate survivin mRNA nor its protein expression. Moreover, the expression of cytoplasmic survivin, known to exert anti-apoptotic actions in cells, still occurred in UV-B-irradiated epidermis of mouse expressing a caspase-3-resistant RasGAP mutant that cannot produce fragment N. Additionally, survivin function in cell cycle progression was not affected by fragment N. These results indicate that, taken individually, mTOR, Bad, or Survivin are not required for fragment N to protect cells from cell death. We conclude that downstream targets of Akt other than mTORC1, Bad, or survivin mediate fragment N-induced protection or that several Akt effectors can compensate for each other to induce the pro-survival fragment N-dependent response.
Resumo:
The indication for pulmonary artery banding is currently limited by several factors. Previous attempts have failed to produce adjustable pulmonary artery banding with reliable external regulation. An implantable, telemetrically controlled, battery-free device (FloWatch) developed by EndoArt SA, a medical company established in Lausanne, Switzerland, for externally adjustable pulmonary artery banding was evaluated on minipigs and proved to be effective for up to 6 months. The first human implant was performed on a girl with complete atrioventricular septal defect with unbalanced ventricles, large patent ductus arteriosus and pulmonary hypertension. At one month of age she underwent closure of the patent ductus arteriosus and FloWatch implantation around the pulmonary artery through conventional left thoracotomy. The surgical procedure was rapid and uneventful. During the entire postoperative period bedside adjustments (narrowing or release of pulmonary artery banding with echocardiographic assessment) were repeatedly required to maintain an adequate pressure gradient. The early clinical results demonstrated the clinical benefits of unlimited external telemetric adjustments. The next step will be a multi-centre clinical trial to confirm the early results and adapt therapeutic strategies to this promising technology.