978 resultados para Fermat Equation
Resumo:
Objective: Several limitations of published bioelectrical impedance analysis (BIA) equations have been reported. The aims were to develop in a multiethnic, elderly population a new prediction equation and cross-validate it along with some published BIA equations for estimating fat-free mass using deuterium oxide dilution as the reference method. Design and setting: Cross-sectional study of elderly from five developing countries. Methods: Total body water (TBW) measured by deuterium dilution was used to determine fat-free mass (FFM) in 383 subjects. Anthropometric and BIA variables were also measured. Only 377 subjects were included for the analysis, randomly divided into development and cross-validation groups after stratified by gender. Stepwise model selection was used to generate the model and Bland Altman analysis was used to test agreement. Results: FFM = 2.95 - 3.89 (Gender) + 0.514 (Ht(2)/Z) + 0.090 (Waist) + 0.156 (Body weight). The model fit parameters were an R(2), total F-Ratio, and the SEE of 0.88, 314.3, and 3.3, respectively. None of the published BIA equations met the criteria for agreement. The new BIA equation underestimated FFM by just 0.3 kg in the cross-validation sample. The mean of the difference between FFM by TBW and the new BIA equation were not significantly different; 95% of the differences were between the limits of agreement of -6.3 to 6.9 kg of FFM. There was no significant association between the mean of the differences and their averages (r = 0.008 and p = 0.2). Conclusions: This new BIA equation offers a valid option compared with some of the current published BIA equations to estimate FFM in elderly subjects from five developing countries.
Resumo:
Background: Alterations in gastrointestinal tract physiology after gastrectomy may affect appetite and energy balance. Objective: The objective of this study was to examine energy balance, appetite, and gastrointestinal transit in subjects with gastrectomy. Design: Seven subjects with total gastrectomy (TG) and 14 subjects with partial gastrectomy (PG), who were free from signs of recurrent disease, and 10 healthy control subjects were studied. Resting energy expenditure (REE) was measured by indirect calorimetry and compared with REE predicted by the Harris-Benedict equation (mREE/pREE%). Gastrointestinal transit was measured by scintigraphy. Habitual food intake was assessed, and appetite was measured during scintigraphy after ingestion of a test meal (361 kcal). Results: Body mass index was not different among the groups. mREE/pREE% was higher in patients with PG (P < 0.01) than in control subjects. The TG group showed higher energy intake (P < 0.05) than the PG group and control subjects. Gastric emptying was faster in the PG group than in control subjects, and gastrointestinal transit was accelerated in both PG and TG groups. An intense, precocious postprandial fullness and a relatively early recovery of hunger and prospective consumption sensations were seen in these patients. Conclusions: Patients with PG or TG have higher than predicted energy expenditure, which in TG seems to be compensated for by increased energy intake. These patients have preserved postprandial appetite responses and precocious postprandial fullness, which seem to be associated with disturbances in gastrointestinal transit of the ingested meal and are likely to be independent of vagal fiber integrity or stomach-released ghrelin. Am J Clin Nutr 2009; 89: 231-9.
Resumo:
A nongravimetric acetyl bromide lignin (ABL) method was evaluated to quantify lignin concentration in a variety of plant materials. The traditional approach to lignin quantification required extraction of lignin with acidic dioxane and its isolation from each plant sample to construct a standard curve via spectrophotometric analysis. Lignin concentration was then measured in pre-extracted plant cell walls. However, this presented a methodological complexity because extraction and isolation procedures are lengthy and tedious, particularly if there are many samples involved. This work was targeted to simplify lignin quantification. Our hypothesis was that any lignin, regardless of its botanical origin, could be used to construct a standard curve for the purpose of determining lignin concentration in a variety of plants. To test our hypothesis, lignins were isolated from a range of diverse plants and, along with three commercial lignins, standard curves were built and compared among them. Slopes and intercepts derived from these standard curves were close enough to allow utilization of a mean extinction coefficient in the regression equation to estimate : lignin concentration in any plant, independent of its botanical origin. Lignin quantification by use of a common regression equation obviates the steps of lignin extraction, isolation, and standard curve construction, which substantially expedites the ABL method. Acetyl bromide lignin method is a fast, convenient analytical procedure that may routinely be used to quantify lignin.