994 resultados para FIELD-THEORIES
Resumo:
To evaluate primary care physicians' attitude towards implementation of rotavirus (RV) immunisation into the Swiss immunisation schedule, an eight-question internet-based questionnaire was sent to the 3799 subscribers of InfoVac, a nationwide web-based expert network on immunisation issues, which reaches >95% of paediatricians and smaller proportions of other primary care physicians. Five demographic variables were also inquired. Descriptive statistics and multivariate analyses for the main outcome "acceptance of routine RV immunisation" and other variables were performed. Diffusion of innovation theory was used for data assessment. Nine-hundred seventy-seven questionnaires were returned (26%). Fifty percent of participants were paediatricians. Routine RV immunisation was supported by 146 participants (15%; so called early adopters), dismissed by 620 (64%), leaving 211 (21%) undecided. However, when asked whether they would recommend RV vaccination to parents if it were officially recommended by the federal authorities and reimbursed, 467 (48.5%; so called early majority) agreed to recommend RV immunisation. Multivariate analysis revealed that physicians who would immunise their own child (OR: 5.1; 95% CI: 4.1-6.3), hospital-based physicians (OR: 1.6; 95% CI: 1.1-2.3) and physicians from the French (OR: 1.6; 95% CI: 1.2-2.3) and Italian speaking areas of Switzerland (OR: 2.5; 95% CI: 1.1-5.8) were more likely to support RV immunisation. Diffusion of innovation theory predicts a >80% implementation if approximately 50% of a given population support an innovation. Introduction of RV immunisation in Switzerland is likely to be successful, if (i) the federal authorities issue an official recommendation and (ii) costs are covered by basic health care insurance.
Resumo:
Selostus: Koejärjestelyt kohonneen lämpötilan ja CO2-tason vaikutusten simuloimiseksi peltokasveilla Suomessa
Resumo:
Astrocytes have traditionally been considered ancillary, satellite cells of the nervous system. However, it is a very recent acquisition that glial cells generate signaling loops which are integral to the brain circuitry and participate, interactively with neuronal networks, in the processing of information. Such a conceptual breakthrough makes this field of investigation one of the hottest in neuroscience, as it calls for a revision of past theories of brain function as well as for new strategies of experimental exploration of brain function. Glial cells are electrically not excitable, and it was only the use of optical recording techniques together with calcium sensitive dyes, that allowed the chemical excitability of glial cells to become apparent. Studies using these new techniques have shown for the first time that glial cells are activated by surrounding synaptic activity and translate neuronal signals into their own calcium code. Intracellular calcium concentration([Ca2+]i) elevations in glial cells have then shown to underlie spatial transfer of information in the glial network, accompanied by release of chemical transmitters (gliotransmitters) such as glutamate and back-signaling to neurons. As a consequence, optical imaging techniques applied to cell cultures or intact tissue have become a state-of-the-art technology for studying glial cell signaling. The molecular mechanisms leading to release of "gliotransmitters," especially glutamate, from glia are under debate. Accumulating evidence clearly indicates that astrocytes secrete numerous transmitters by Ca(2+)-dependent exocytosis. This review will discuss the mechanisms underlying the release of chemical transmitters from astrocytes with a particular emphasis to the regulated exocytosis processes.
Resumo:
A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image processing. This paper provides the theoretical background and technical information for performing the experiment. The proposed activity requires students able to develop a wide range of skills since they are expected to deal with optical components, including spatial light modulators, and develop scripts to perform some calculations.
Resumo:
The transport and magnetotransport properties of the metallic and ferromagnetic SrRuO3 (SRO) and the metallic and paramagnetic LaNiO3 (LNO) epitaxial thin films have been investigated in fields up to 55 T at temperatures down to 1.8 K . At low temperatures both samples display a well-defined resistivity minimum. We argue that this behavior is due to the increasing relevance of quantum corrections to the conductivity (QCC) as temperature is lowered; this effect being particularly relevant in these oxides due to their short mean free path. However, it is not straightforward to discriminate between contributions of weak localization and renormalization of electron-electron interactions to the QCC through temperature dependence alone. We have taken advantage of the distinct effect of a magnetic field on both mechanisms to demonstrate that in ferromagnetic SRO the weak-localization contribution is suppressed by the large internal field leaving only renormalized electron-electron interactions, whereas in the nonmagnetic LNO thin films the weak-localization term is relevant.
Resumo:
The magnetic exchange between epitaxial thin films of the multiferroic (antiferromagnetic and ferroelectric) hexagonal YMnO3 oxide and a soft ferromagnetic (FM) layer is used to couple the magnetic response of the FM layer to the magnetic state of the antiferromagnetic one. We will show that biasing the ferroelectric YMnO3 layer by an electric field allows control of the magnetic exchange bias and subsequently the magnetotransport properties of the FM layer. This finding may contribute to paving the way towards a new generation of electric-field controlled spintronic devices.
Resumo:
In modern agriculture, several factors cause changes in the soil physical properties. The time of establishment of a crop (plantation age) and the slope are examples of factors that moderate the impact of mechanized operations on the soil structure. The objective of this study was to analyze the effect of machinery traffic on the physical properties of a Red-Yellow Latosol under coffee plantations with different ages (2, 7, 18, and 33 years) and slope positions (3, 9 and 15 %). Samples were collected from three positions between coffee rows (lower wheel track, inter-row and upper wheel track) and at two depths (surface layer and sub-surface). Changes in the total porosity, macroporosity, microporosity, organic matter, bulk density, and aggregate stability were investigated. Our results showed that the slope influenced the organic matter content, microporosity and aggregate stability. The soil samples under the inter-row were minimally damaged in their structure, compared to those from under the lower and upper wheel track, while the structure was better preserved under the lower than the upper track. The time since the establishment of the crop, i.e., the plantation age, was the main factor determining the extent of structural degradation in the coffee plantation.
Resumo:
The integral representation of the electromagnetic two-form, defined on Minkowski space-time, is studied from a new point of view. The aim of the paper is to obtain an invariant criteria in order to define the radiative field. This criteria generalizes the well-known structureless charge case. We begin with the curvature two-form, because its field equations incorporate the motion of the sources. The gauge theory methods (connection one-forms) are not suited because their field equations do not incorporate the motion of the sources. We obtain an integral solution of the Maxwell equations in the case of a flow of charges in irrotational motion. This solution induces us to propose a new method of solving the problem of the nature of the retarded radiative field. This method is based on a projection tensor operator which, being local, is suited to being implemented on general relativity. We propose the field equations for the pair {electromagnetic field, projection tensor J. These field equations are an algebraic differential first-order system of oneforms, which verifies automatically the integrability conditions.
Resumo:
We investigate chaotic, memory, and cooling rate effects in the three-dimensional Edwards-Anderson model by doing thermoremanent (TRM) and ac susceptibility numerical experiments and making a detailed comparison with laboratory experiments on spin glasses. In contrast to the experiments, the Edwards-Anderson model does not show any trace of reinitialization processes in temperature change experiments (TRM or ac). A detailed comparison with ac relaxation experiments in the presence of dc magnetic field or coupling distribution perturbations reveals that the absence of chaotic effects in the Edwards-Anderson model is a consequence of the presence of strong cooling rate effects. We discuss possible solutions to this discrepancy, in particular the smallness of the time scales reached in numerical experiments, but we also question the validity of the Edwards-Anderson model to reproduce the experimental results.
Resumo:
We report experimental studies of crystals of Mn12 molecular magnetic clusters in pulsed magnetic fields with sweep rates up to 410^3 T/s . The steps in the magnetization curve are observed at fields that are shifted with respect to the resonant field values. The shift systematically increases as the rate of the field sweep goes up. These data are consistent with the theory of the collective dipolar relaxation in molecular magnets.
Resumo:
We analyze the heat transfer between two nanoparticles separated by a distance lying in the near-field domain in which energy interchange is due to the Coulomb interactions. The thermal conductance is computed by assuming that the particles have charge distributions characterized by fluctuating multipole moments in equilibrium with heat baths at two different temperatures. This quantity follows from the fluctuation-dissipation theorem for the fluctuations of the multipolar moments. We compare the behavior of the conductance as a function of the distance between the particles with the result obtained by means of molecular dynamics simulations. The formalism proposed enables us to provide a comprehensive explanation of the marked growth of the conductance when decreasing the distance between the nanoparticles.
Resumo:
With the aim of a better understanding of both cationic distribution and magnetic properties of the uniaxial SrFe12-xCrxO19hexagonal ferrites, Mössbauer spectroscopy, neutron diffraction and high field magnetization measurements have been carried out. The Cr3+ions occupy the octahedral sites of the M structure with a preference hierarchy within them. The magnetic measurements, together with the deduced cationic distribution, indicate that some sublattices have a random spin canting around the c-axis.
Resumo:
We study the contribution to vacuum decay in field theory due to the interaction between the long- and short-wavelength modes of the field. The field model considered consists of a scalar field of mass M with a cubic term in the potential. The dynamics of the long-wavelength modes becomes diffusive in this interaction. The diffusive behavior is described by the reduced Wigner function that characterizes the state of the long-wavelength modes. This function is obtained from the whole Wigner function by integration of the degrees of freedom of the short-wavelength modes. The dynamical equation for the reduced Wigner function becomes a kind of Fokker-Planck equation which is solved with suitable boundary conditions enforcing an initial metastable vacuum state trapped in the potential well. As a result a finite activation rate is found, even at zero temperature, for the formation of true vacuum bubbles of size M-1. This effect makes a substantial contribution to the total decay rate.