983 resultados para Energy deposition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A precision measurement of the top quark mass m_t is obtained using a sample of ttbar events from ppbar collisions at the Fermilab Tevatron with the CDF II detector. Selected events require an electron or muon, large missing transverse energy, and exactly four high-energy jets, at least one of which is tagged as coming from a b quark. A likelihood is calculated using a matrix element method with quasi-Monte Carlo integration taking into account finite detector resolution and jet mass effects. The event likelihood is a function of m_t and a parameter DJES to calibrate the jet energy scale /in situ/. Using a total of 1087 events, a value of m_t = 173.0 +/- 1.2 GeV/c^2 is measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a signature-based search for anomalous production of events containing a photon, two jets, of which at least one is identified as originating from a b quark, and missing transverse energy. The search uses data corresponding to 2.0/fb of integrated luminosity from p-pbar collisions at a center-of-mass energy of sqrt(s)=1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. From 6,697,466 events with a photon candidate with transverse energy ET> 25 GeV, we find 617 events with missing transverse energy > 25 GeV and two or more jets with ET> 15 GeV, at least one identified as originating from a b quark, versus an expectation of 607+- 113 events. Increasing the requirement on missing transverse energy to 50 GeV, we find 28 events versus an expectation of 30+-11 events. We find no indications of non-standard-model phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An expression derived for the free energy of mixing of a divalent basic oxide (MO) with SiO2 based on a model of silicate structure, takes into account the distribution of O2- (from MO) into the silica network, the mixing of silicate ions with O2- and the enthalpy of mixing. The resulting expression is ΔGmix=RT{N11n (2N1-N)2/4N1(1-N)+N21n N 2-N/1-N}, where N={(β+N1)-√(β+N 1)2-8βN1N2}/2β β=characteristic constant for the system N1=mol fraction of silica N2=mol fraction of MO. For the proper choice of β, calculated values of the activity of MO for the system PbO-SiO2, MnO-SiO2, FeO-SiO2 and CaO-SiO2 are in good agreement with experiment. The model predicts that the activity of the basic oxide decreases with increase in temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Making use of the empirical potential functions for peptide NH .. O bonds, developed in this laboratory, the relative stabilities of the rightand left-handed α-helical structures of poly-L-alanine have been investigated, by calculating their conformational energies (V). The value of Vmin of the right-handed helix (αP) is about - 10.4 kcal/mole, and that of the left-handed helix (αM) is about - 9.6 kcal/mole, showing that the former is lower in energy by 0.8 kcal/mole. The helical parameters of the stable conformation of αP are n ∼ 3.6 and h ∼ 1.5 Å. The hydrogen bond of length 2.85 Å and nonlinearity of about 10° adds about 4.0 kcal/ mole to the stabilising energy of the helix in the minimum enregy region. The energy minimum is not sharply defined, but occurs over a long valley, suggesting that a distribution of conformations (φ{symbol}, ψ) of nearly the same energy may occur for the individual residues in a helix. The experimental data of a-helical fibres of poly-L-alanine are in good agreement with the theoretical results for αP. In the case of proteins, the mean values of (φ{symbol}, ψ) for different helices are distributed, but they invariably occur within the contour for V = Vmin + 2 kcal/mole for αP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron-energy equation for an atomic radiating plasma is considered in this work. Using the atomic model of Bates, Kingston and McWhirter, the radiation loss-term valid for all optical thicknesses is obtained. A study of the energy gained by electrons in inelastic collisions shows that the radiation loss term can be neglected only for rapidly-decaying or fast-growing plasmas. Emission from optically thin plasmas is considered next and an exact expression is given for the total radiation loss in a recombination continuum. A derivation of the Kramers-Unsöld approximation is presented and the error involved in estimating the total emitted recombination radiation by this approximation is shown to be small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films are the basis of much of recent technological advance, ranging from coatings with mechanical or optical benefits to platforms for nanoscale electronics. In the latter, semiconductors have been the norm ever since silicon became the main construction material for a multitude of electronical components. The array of characteristics of silicon-based systems can be widened by manipulating the structure of the thin films at the nanoscale - for instance, by making them porous. The different characteristics of different films can then to some extent be combined by simple superposition. Thin films can be manufactured using many different methods. One emerging field is cluster beam deposition, where aggregates of hundreds or thousands of atoms are deposited one by one to form a layer, the characteristics of which depend on the parameters of deposition. One critical parameter is deposition energy, which dictates how porous, if at all, the layer becomes. Other parameters, such as sputtering rate and aggregation conditions, have an effect on the size and consistency of the individual clusters. Understanding nanoscale processes, which cannot be observed experimentally, is fundamental to optimizing experimental techniques and inventing new possibilities for advances at this scale. Atomistic computer simulations offer a window to the world of nanometers and nanoseconds in a way unparalleled by the most accurate of microscopes. Transmission electron microscope image simulations can then bridge this gap by providing a tangible link between the simulated and the experimental. In this thesis, the entire process of cluster beam deposition is explored using molecular dynamics and image simulations. The process begins with the formation of the clusters, which is investigated for Si/Ge in an Ar atmosphere. The structure of the clusters is optimized to bring it as close to the experimental ideal as possible. Then, clusters are deposited, one by one, onto a substrate, until a sufficiently thick layer has been produced. Finally, the concept is expanded by further deposition with different parameters, resulting in multiple superimposed layers of different porosities. This work demonstrates how the aggregation of clusters is not entirely understood within the scope of the approximations used in the simulations; yet, it is also shown how the continued deposition of clusters with a varying deposition energy can lead to a novel kind of nanostructured thin film: a multielemental porous multilayer. According to theory, these new structures have characteristics that can be tailored for a variety of applications, with precision heretofore unseen in conventional multilayer manufacture.