987 resultados para Echo-Planar Imaging
Resumo:
On-board image guidance, such as cone-beam CT (CBCT) and kV/MV 2D imaging, is essential in many radiation therapy procedures, such as intensity modulated radiotherapy (IMRT) and stereotactic body radiation therapy (SBRT). These imaging techniques provide predominantly anatomical information for treatment planning and target localization. Recently, studies have shown that treatment planning based on functional and molecular information about the tumor and surrounding tissue could potentially improve the effectiveness of radiation therapy. However, current on-board imaging systems are limited in their functional and molecular imaging capability. Single Photon Emission Computed Tomography (SPECT) is a candidate to achieve on-board functional and molecular imaging. Traditional SPECT systems typically take 20 minutes or more for a scan, which is too long for on-board imaging. A robotic multi-pinhole SPECT system was proposed in this dissertation to provide shorter imaging time by using a robotic arm to maneuver the multi-pinhole SPECT system around the patient in position for radiation therapy.
A 49-pinhole collimated SPECT detector and its shielding were designed and simulated in this work using the computer-aided design (CAD) software. The trajectories of robotic arm about the patient, treatment table and gantry in the radiation therapy room and several detector assemblies such as parallel holes, single pinhole and 49 pinholes collimated detector were investigated. The rail mounted system was designed to enable a full range of detector positions and orientations to various crucial treatment sites including head and torso, while avoiding collision with linear accelerator (LINAC), patient table and patient.
An alignment method was developed in this work to calibrate the on-board robotic SPECT to the LINAC coordinate frame and to the coordinate frames of other on-board imaging systems such as CBCT. This alignment method utilizes line sources and one pinhole projection of these line sources. The model consists of multiple alignment parameters which maps line sources in 3-dimensional (3D) space to their 2-dimensional (2D) projections on the SPECT detector. Computer-simulation studies and experimental evaluations were performed as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise and acquisition geometry. In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, the six alignment parameters (3 translational and 3 rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by Radon transform, the estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution and detector acquisition geometry. The estimation accuracy was significantly improved by using 4 line sources rather than 3 and also by using thinner line-source projections (obtained by better intrinsic detector resolution). With 5 line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist.
Simulation studies were performed to investigate the improvement of imaging sensitivity and accuracy of hot sphere localization for breast imaging of patients in prone position. A 3D XCAT phantom was simulated in the prone position with nine hot spheres of 10 mm diameter added in the left breast. A no-treatment-table case and two commercial prone breast boards, 7 and 24 cm thick, were simulated. Different pinhole focal lengths were assessed for root-mean-square-error (RMSE). The pinhole focal lengths resulting in the lowest RMSE values were 12 cm, 18 cm and 21 cm for no table, thin board, and thick board, respectively. In both no table and thin board cases, all 9 hot spheres were easily visualized above background with 4-minute scans utilizing the 49-pinhole SPECT system while seven of nine hot spheres were visible with the thick board. In comparison with parallel-hole system, our 49-pinhole system shows reduction in noise and bias under these simulation cases. These results correspond to smaller radii of rotation for no-table case and thinner prone board. Similarly, localization accuracy with the 49-pinhole system was significantly better than with the parallel-hole system for both the thin and thick prone boards. Median localization errors for the 49-pinhole system with the thin board were less than 3 mm for 5 of 9 hot spheres, and less than 6 mm for the other 4 hot spheres. Median localization errors of 49-pinhole system with the thick board were less than 4 mm for 5 of 9 hot spheres, and less than 8 mm for the other 4 hot spheres.
Besides prone breast imaging, respiratory-gated region-of-interest (ROI) imaging of lung tumor was also investigated. A simulation study was conducted on the potential of multi-pinhole, region-of-interest (ROI) SPECT to alleviate noise effects associated with respiratory-gated SPECT imaging of the thorax. Two 4D XCAT digital phantoms were constructed, with either a 10 mm or 20 mm diameter tumor added in the right lung. The maximum diaphragm motion was 2 cm (for 10 mm tumor) or 4 cm (for 20 mm tumor) in superior-inferior direction and 1.2 cm in anterior-posterior direction. Projections were simulated with a 4-minute acquisition time (40 seconds per each of 6 gates) using either the ROI SPECT system (49-pinhole) or reference single and dual conventional broad cross-section, parallel-hole collimated SPECT. The SPECT images were reconstructed using OSEM with up to 6 iterations. Images were evaluated as a function of gate by profiles, noise versus bias curves, and a numerical observer performing a forced-choice localization task. Even for the 20 mm tumor, the 49-pinhole imaging ROI was found sufficient to encompass fully usual clinical ranges of diaphragm motion. Averaged over the 6 gates, noise at iteration 6 of 49-pinhole ROI imaging (10.9 µCi/ml) was approximately comparable to noise at iteration 2 of the two dual and single parallel-hole, broad cross-section systems (12.4 µCi/ml and 13.8 µCi/ml, respectively). Corresponding biases were much lower for the 49-pinhole ROI system (3.8 µCi/ml), versus 6.2 µCi/ml and 6.5 µCi/ml for the dual and single parallel-hole systems, respectively. Median localization errors averaged over 6 gates, for the 10 mm and 20 mm tumors respectively, were 1.6 mm and 0.5 mm using the ROI imaging system and 6.6 mm and 2.3 mm using the dual parallel-hole, broad cross-section system. The results demonstrate substantially improved imaging via ROI methods. One important application may be gated imaging of patients in position for radiation therapy.
A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150-L110 robot). An imaging study was performed with a phantom (PET CT Phantom
In conclusion, the proposed on-board robotic SPECT can be aligned to LINAC/CBCT with a single pinhole projection of the line-source phantom. Alignment parameters can be estimated using one pinhole projection of line sources. This alignment method may be important for multi-pinhole SPECT, where relative pinhole alignment may vary during rotation. For single pinhole and multi-pinhole SPECT imaging onboard radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC. In simulation studies of prone breast imaging and respiratory-gated lung imaging, the 49-pinhole detector showed better tumor contrast recovery and localization in a 4-minute scan compared to parallel-hole detector. On-board SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frames could be an effective means to estimate detector pose for use in SPECT image reconstruction.
Resumo:
Perceiving or producing complex vocalizations such as speech and birdsongs require the coordinated activity of neuronal populations, and these activity patterns can vary over space and time. How learned communication signals are represented by populations of sensorimotor neurons essential to vocal perception and production remains poorly understood. Using a combination of two-photon calcium imaging, intracellular electrophysiological recording and retrograde tracing methods in anesthetized adult male zebra finches (
Resumo:
PURPOSE: A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion-weighted imaging. THEORY: Images with reduced artifacts are reconstructed with an iterative projection onto convex sets (POCS) procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. METHODS: The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved diffusion-weighted imaging data corresponding to different k-space trajectories and matrix condition numbers. RESULTS: Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. CONCLUSION: POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods.
Resumo:
Recent emergence of human connectome imaging has led to a high demand on angular and spatial resolutions for diffusion magnetic resonance imaging (MRI). While there have been significant growths in high angular resolution diffusion imaging, the improvement in spatial resolution is still limited due to a number of technical challenges, such as the low signal-to-noise ratio and high motion artifacts. As a result, the benefit of a high spatial resolution in the whole-brain connectome imaging has not been fully evaluated in vivo. In this brief report, the impact of spatial resolution was assessed in a newly acquired whole-brain three-dimensional diffusion tensor imaging data set with an isotropic spatial resolution of 0.85 mm. It was found that the delineation of short cortical association fibers is drastically improved as well as the definition of fiber pathway endings into the gray/white matter boundary-both of which will help construct a more accurate structural map of the human brain connectome.
Resumo:
If you walk on sand, it supports your weight. How do the disordered forces between particles in sand organize, to keep you from sinking? This simple question is surprisingly difficult to answer experimentally: measuring forces in three dimensions, between deeply buried grains, is challenging. Here we describe experiments in which we have succeeded in measuring forces inside a granular packing subject to controlled deformations. We connect the measured micro-scale forces to the macro-scale packing force response with an averaging, mean field calculation. This calculation explains how the combination of packing structure and contact deformations produce the observed nontrivial mechanical response of the packing, revealing a surprising microscopic particle deformation enhancement mechanism.
Resumo:
OBJECTIVE: The authors sought to increase understanding of the brain mechanisms involved in cigarette addiction by identifying neural substrates modulated by visual smoking cues in nicotine-deprived smokers. METHOD: Event-related functional magnetic resonance imaging (fMRI) was used to detect brain activation after exposure to smoking-related images in a group of nicotine-deprived smokers and a nonsmoking comparison group. Subjects viewed a pseudo-random sequence of smoking images, neutral nonsmoking images, and rare targets (photographs of animals). Subjects pressed a button whenever a rare target appeared. RESULTS: In smokers, the fMRI signal was greater after exposure to smoking-related images than after exposure to neutral images in mesolimbic dopamine reward circuits known to be activated by addictive drugs (right posterior amygdala, posterior hippocampus, ventral tegmental area, and medial thalamus) as well as in areas related to visuospatial attention (bilateral prefrontal and parietal cortex and right fusiform gyrus). In nonsmokers, no significant differences in fMRI signal following exposure to smoking-related and neutral images were detected. In most regions studied, both subject groups showed greater activation following presentation of rare target images than after exposure to neutral images. CONCLUSIONS: In nicotine-deprived smokers, both reward and attention circuits were activated by exposure to smoking-related images. Smoking cues are processed like rare targets in that they activate attentional regions. These cues are also processed like addictive drugs in that they activate mesolimbic reward regions.
Resumo:
INTRODUCTION: Increasing number of stretch-shortening contractions (SSCs) results in increased muscle injury. METHODS: Fischer Hybrid rats were acutely exposed to an increasing number of SSCs in vivo using a custom-designed dynamometer. Magnetic resonance imaging (MRI) imaging was conducted 72 hours after exposure when rats were infused with Prohance and imaged using a 7T rodent MRI system (GE Epic 12.0). Images were acquired in the transverse plane with typically 60 total slices acquired covering the entire length of the hind legs. Rats were euthanized after MRI, the lower limbs removed, and tibialis anterior muscles were prepared for histology and quantified stereology. RESULTS: Stereological analyses showed myofiber degeneration, and cellular infiltrates significantly increased following 70 and 150 SSC exposure compared to controls. MRI images revealed that the percent affected area significantly increased with exposure in all SSC groups in a graded fashion. Signal intensity also significantly increased with increasing SSC repetitions. DISCUSSION: These results suggest that contrast-enhanced MRI has the sensitivity to differentiate specific degrees of skeletal muscle strain injury, and imaging data are specifically representative of cellular histopathology quantified via stereological analyses.
Resumo:
Understanding tumor vascular dynamics through parameters such as blood flow and oxygenation can yield insight into tumor biology and therapeutic response. Hyperspectral microscopy enables optical detection of hemoglobin saturation or blood velocity by either acquiring multiple images that are spectrally distinct or by rapid acquisition at a single wavelength over time. However, the serial acquisition of spectral images over time prevents the ability to monitor rapid changes in vascular dynamics and cannot monitor concurrent changes in oxygenation and flow rate. Here, we introduce snap shot-multispectral imaging (SS-MSI) for use in imaging the microvasculature in mouse dorsal-window chambers. By spatially multiplexing spectral information into a single-image capture, simultaneous acquisition of dynamic hemoglobin saturation and blood flow over time is achieved down to the capillary level and provides an improved optical tool for monitoring rapid in vivo vascular dynamics.
Resumo:
© 2005-2012 IEEE.Within industrial automation systems, three-dimensional (3-D) vision provides very useful feedback information in autonomous operation of various manufacturing equipment (e.g., industrial robots, material handling devices, assembly systems, and machine tools). The hardware performance in contemporary 3-D scanning devices is suitable for online utilization. However, the bottleneck is the lack of real-time algorithms for recognition of geometric primitives (e.g., planes and natural quadrics) from a scanned point cloud. One of the most important and the most frequent geometric primitive in various engineering tasks is plane. In this paper, we propose a new fast one-pass algorithm for recognition (segmentation and fitting) of planar segments from a point cloud. To effectively segment planar regions, we exploit the orthonormality of certain wavelets to polynomial function, as well as their sensitivity to abrupt changes. After segmentation of planar regions, we estimate the parameters of corresponding planes using standard fitting procedures. For point cloud structuring, a z-buffer algorithm with mesh triangles representation in barycentric coordinates is employed. The proposed recognition method is tested and experimentally validated in several real-world case studies.
Resumo:
BACKGROUND: The bioluminescence technique was used to quantify the local glucose concentration in the tissue surrounding subcutaneously implanted polyurethane material and surrounding glucose sensors. In addition, some implants were coated with a single layer of adipose-derived stromal cells (ASCs) because these cells improve the wound-healing response around biomaterials. METHODS: Control and ASC-coated implants were implanted subcutaneously in rats for 1 or 8 weeks (polyurethane) or for 1 week only (glucose sensors). Tissue biopsies adjacent to the implant were immediately frozen at the time of explant. Cryosections were assayed for glucose concentration profile using the bioluminescence technique. RESULTS: For the polyurethane samples, no significant differences in glucose concentration within 100 μm of the implant surface were found between bare and ASC-coated implants at 1 or 8 weeks. A glucose concentration gradient was demonstrated around the glucose sensors. For all sensors, the minimum glucose concentration of approximately 4 mM was found at the implant surface and increased with distance from the sensor surface until the glucose concentration peaked at approximately 7 mM at 100 μm. Then the glucose concentration decreased to 5.5-6.5 mM more than 100 μmm from the surface. CONCLUSIONS: The ASC attachment to polyurethane and to glucose sensors did not change the glucose profiles in the tissue surrounding the implants. Although most glucose sensors incorporate a diffusion barrier to reduce the gradient of glucose and oxygen in the tissue, it is typically assumed that there is no steep glucose gradient around the sensors. However, a glucose gradient was observed around the sensors. A more complete understanding of glucose transport and concentration gradients around sensors is critical.
Resumo:
The utility of acoustic radiation force impulse (ARFI) imaging for real-time visualization of abdominal malignancies was investigated. Nine patients presenting with suspicious masses in the liver (n = 7) or kidney (n = 2) underwent combined sonography/ARFI imaging. Images were acquired of a total of 12 tumors in the nine patients. In all cases, boundary definition in ARFI images was improved or equivalent to boundary definition in B-mode images. Displacement contrast in ARFI images was superior to echo contrast in B-mode images for each tumor. The mean contrast for suspected hepatocellular carcinomas (HCCs) in B-mode images was 2.9 dB (range: 1.5-4.2) versus 7.5 dB (range: 3.1-11.9) in ARFI images, with all HCCs appearing more compliant than regional cirrhotic liver parenchyma. The mean contrast for metastases in B-mode images was 3.1 dB (range: 1.2-5.2) versus 9.3 dB (range: 5.7-13.9) in ARFI images, with all masses appearing less compliant than regional non-cirrhotic liver parenchyma. ARFI image contrast (10.4 dB) was superior to B-mode contrast (0.9 dB) for a renal mass. To our knowledge, we present the first in vivo images of abdominal malignancies in humans acquired with the ARFI method or any other technique of imaging tissue elasticity.
Resumo:
Four pigs, three with focal infarctions in the apical intraventricular septum (IVS) and/or left ventricular free wall (LVFW), were imaged with an intracardiac echocardiography (ICE) transducer. Custom beam sequences were used to excite the myocardium with focused acoustic radiation force (ARF) impulses and image the subsequent tissue response. Tissue displacement in response to the ARF excitation was calculated with a phase-based estimator, and transverse wave magnitude and velocity were each estimated at every depth. The excitation sequence was repeated rapidly, either in the same location to generate 40 Hz M-modes at a single steering angle, or with a modulated steering angle to synthesize 2-D displacement magnitude and shear wave velocity images at 17 points in the cardiac cycle. Both types of images were acquired from various views in the right and left ventricles, in and out of infarcted regions. In all animals, acoustic radiation force impulse (ARFI) and shear wave elasticity imaging (SWEI) estimates indicated diastolic relaxation and systolic contraction in noninfarcted tissues. The M-mode sequences showed high beat-to-beat spatio-temporal repeatability of the measurements for each imaging plane. In views of noninfarcted tissue in the diseased animals, no significant elastic remodeling was indicated when compared with the control. Where available, views of infarcted tissue were compared with similar views from the control animal. In views of the LVFW, the infarcted tissue presented as stiff and non-contractile compared with the control. In a view of the IVS, no significant difference was seen between infarcted and healthy tissue, whereas in another view, a heterogeneous infarction was seen to be presenting itself as non-contractile in systole.