1000 resultados para Density banding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: We characterized interleukin-8 (IL-8) and IL-8 receptor expression (CXCR1 and CXCR2) in prostate cancer to address their significance to this disease. Experimental Design: Immunohistochemistry was conducted on 40 cases of human prostate biopsy containing histologically normal and neoplastic tissue, excised from patients with locally confined or invasive androgen-dependent prostate cancer, and 10 cases of transurethral resection of the prostate material from patients with androgen-independent disease. Results: Weak to moderate IL-8 expression was strictly localized to the apical membrane of normal prostate epithelium. In contrast, membranous expression of IL-8, CXCR1, and CXCR2 was nonapical in cancer cells of Gleason pattern 3 and 4, whereas circumferential expression was present in Gleason pattern 5 and androgen-independent prostate cancer. Each of IL-8, CXCR1, and CXCR2 were also increasingly localized to the cytoplasm of cancer cells in correlation with advancing stage of disease. Cytoplasmic expression (but not apical membrane expression) of IL-8 in Gleason pattern 3 and 4 cancer correlated with Ki-67 expression (R = 0.79; P <0.001), cyclin D1 expression (R = 0.79; P <0.001), and microvessel density (R = 0.81; P <0.001). In vitro studies on androgen-independent PC3 cells confirmed the mitogenic activity of IL-8, increasing the rate of cell proliferation through activation of both CXCR1 and CXCR2 receptors. Conclusions: We propose that the concurrent increase in IL-8 and IL-8 receptor expression in human prostate cancer induces autocrine signaling that may be functionally significant in initiating and promoting the progression of prostate cancer by underpinning cell proliferation and angiogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several studies have suggested that men with raised plasma triglycerides (TGs) in combination with adverse levels of other lipids may be at special risk of subsequent ischemic heart disease (IHD). We examined the independent and combined effects of plasma lipids at 10 years of follow-up. We measured fasting TGs, total cholesterol (TC), and high density lipoprotein cholesterol (HDLC) in 4362 men (aged 45 to 63 years) from 2 study populations and reexamined them at intervals during a 10-year follow-up. Major IHD events (death from IHD, clinical myocardial infarction, or ECG-defined myocardial infarction) were recorded. Five hundred thirty-three major IHD events occurred. All 3 lipids were strongly and independently predictive of IHD after 10 years of follow-up. Subjects were then divided into 27 groups (ie, 33) by the tertiles of TGs, TC, and HDLC. The number of events observed in each group was compared with that predicted by a logistic regression model, which included terms for the 3 lipids (without interactions) and potential confounding variables. The incidence of IHD was 22.6% in the group with the lipid risk factor combination with the highest expected risk (high TGs, high TC, and low HDLC) and 4.7% in the group with the lowest expected risk (P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density functional calculations have been performed for ring isomers of sulfur with up to 18 atoms, and for chains with up to ten atoms. There are many isomers of both types, and the calculations predict the existence of new forms. Larger rings and chains are very flexible, with numerous local energy minima. Apart from a small, but consistent overestimate in the bond lengths, the results reproduce experimental structures where known. Calculations are also performed on the energy surfaces of S8 rings, on the interaction between a pair of such rings, and the reaction between one S8 ring and the triplet diradical S8 chain. The results for potential energies, vibrational frequencies, and reaction mechanisms in sulfur rings and chains provide essential ingredients for Monte Carlo simulations of the liquid–liquid phase transition. The results of these simulations will be presented in Part II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equilibrium polymerization of sulfur is investigated by Monte Carlo simulations. The potential energy model is based on density functional results for the cohesive energy, structural, and vibrational properties as well as reactivity of sulfur rings and chains [Part I, J. Chem. Phys. 118, 9257 (2003)]. Liquid samples of 2048 atoms are simulated at temperatures 450less than or equal toTless than or equal to850 K and P=0 starting from monodisperse S-8 molecular compositions. Thermally activated bond breaking processes lead to an equilibrium population of unsaturated atoms that can change the local pattern of covalent bonds and allow the system to approach equilibrium. The concentration of unsaturated atoms and the kinetics of bond interchanges is determined by the energy DeltaE(b) required to break a covalent bond. Equilibrium with respect to the bond distribution is achieved for 15less than or equal toDeltaE(b)less than or equal to21 kcal/mol over a wide temperature range (Tgreater than or equal to450 K), within which polymerization occurs readily, with entropy from the bond distribution overcompensating the increase in enthalpy. There is a maximum in the polymerized fraction at temperature T-max that depends on DeltaE(b). This fraction decreases at higher temperature because broken bonds and short chains proliferate and, for Tless than or equal toT(max), because entropy is less important than enthalpy. The molecular size distribution is described well by a Zimm-Schulz function, plus an isolated peak for S-8. Large molecules are almost exclusively open chains. Rings tend to have fewer than 24 atoms, and only S-8 is present in significant concentrations at all T. The T dependence of the density and the dependence of polymerization fraction and degree on DeltaE(b) give estimates of the polymerization temperature T-f=450+/-20 K. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density functional calculations of the structure, potential energy surface and reactivity for organic systems closely related to bisphenol-A-polycarbonate (BPA-PC) provide the basis for a model describing the ring-opening polymerization of its cyclic oligomers by nucleophilic molecules. Monte Carlo simulations using this model show a strong tendency to polymerize that is increased by increasing density and temperature, and is greater in 3D than in 2D. Entropy in the distribution of inter-particle bonds is the driving force for chain formation. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epoxides and phosphites are often used as additives to stabilize the properties of polymers, including bisphenol A polycarbonate (BPA-PC). We describe density functional (DF) calculations of the reactions of cyclohexene oxide (CHO, cyclohexane epoxide) and phosphites with chain segments of BPA-PC, with the aim of identifying possible reaction paths and energy barriers. The reactions of CHO with the OH-terminated PC chains and with the carbonate group are exothermic, although there is an energy barrier in each case of more than 10 kcal/mol. A comparison of results for different CHO isomers demonstrates the importance of steric effects. The reactions between the same groups of the PC chain and the phosphites 2-[2,4-bis(tert-butyl)phenoxy]-5,5-dimethyl-1,3,2-dioxaphosphorinane] (BPDD) and trimethyl phosphite (TMP), and their phosphonate isomers are characterized by large energy barriers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen bonding in clusters and extended layers of squaric acid molecules has been investigated by density functional computations. Equilibrium geometries, harmonic vibrational frequencies, and energy barriers for proton transfer along hydrogen bonds have been determined using the Car-Parrinello method. The results provide crucial parameters for a first principles modeling of the potential energy surface, and highlight the role of collective modes in the low-energy proton dynamics. The importance of quantum effects in condensed squaric acid systems has been investigated, and shown to be negligible for the lowest-energy collective proton modes. This information provides a quantitative basis for improved atomistic models of the order-disorder and displacive transitions undergone by squaric acid crystals as a function of temperature and pressure. (C) 2001 American Institute of Physics.