986 resultados para Demersal Zooplankton
Resumo:
Vertical distribution of total zooplankton biomass and major taxonomic groups are investigated by layers to depths of 2500-3400 m on the basis of three series of net plankton collections. Zooplankton is most abundant above 1500-2000 m. Since true deep-water species do not occur in the Sea of Japan, biomass drops much more sharply at greater depths than it does in the ocean. Since few carnivores inhabit the deep layers, abundant remains of planktonic organisms fall to the bottom, and carnivorous detritovores feeding on these remains are dominant in deep water bottom fauna.
Resumo:
Vertical distribution of common zooplankton species is examined on the base of two series of layer-by-layer net catches down to depth of 3400 m. Differences between the series are significant for most species only near the surface, whereas in deeper layers character of distribution remains the same. Great depths in the Sea of Japan are populated most actively by species performing intensive daily migrations, and less actively by species continuously confined to a definite depth range. Different character of nutrition of the animals apparently determines extent of utilization of deep layers, which are usual for the species.
Resumo:
Distribution patterns of water temperature, salinity, current velocities, suspended matter concentration, bottom contour, and zooplankton abundance were studied in relation to marine-riverine interactions and tide/ebb phases for coast lines of different configurations in the White Sea during cruises of R/V Ekolog (August of 2006 and 2007). Significant difference in manifestation of combined effect of marine and riverine impacts (estuarine concave relief) and only marine impact (open-sea straight line portion) was observed. This results in both variations in sea water level and distribut patterns of suspended matter and zooplankton.
Resumo:
In summer 2003 we continued our long-term series of observations over the zooplankton community within the Titanic Polygon (area of the frontal zone of Gulf Stream and the Labrador Current) in the North Atlantic, where interaction of ecosystems of subpolar and warm waters takes place. Depending on hydrological situation occurring in the frontal zone interrelated interannual variations in abundance and biomass of plankton species including Calanus hyperboreus and mesopelagic shrimps of Acanthephyra genus were observed. In different years contribution of two parallel trophic nets passing primarily through the larger and smaller plankters to formation of the community varied. Data on the size structure of population of macroplankton shrimps are presented.