993 resultados para Decoding algorithm
Resumo:
We report some existing work, inspired by analogies between human thought and machine computation, showing that the informational state of a digital computer can be decoded in a similar way to brain decoding. We then discuss some proposed work that would leverage this analogy to shed light on the amount of information that may be missed by the technical limitations of current neuroimaging technologies. © 2012 Springer-Verlag.
Resumo:
Both embodied and symbolic accounts of conceptual organization would predict partial sharing and partial differentiation between the neural activations seen for concepts activated via different stimulus modalities. But cross-participant and cross-session variability in BOLD activity patterns makes analyses of such patterns with MVPA methods challenging. Here, we examine the effect of cross-modal and individual variation on the machine learning analysis of fMRI data recorded during a word property generation task. We present the same set of living and non-living concepts (land-mammals, or work tools) to a cohort of Japanese participants in two sessions: the first using auditory presentation of spoken words; the second using visual presentation of words written in Japanese characters. Classification accuracies confirmed that these semantic categories could be detected in single trials, with within-session predictive accuracies of 80-90%. However cross-session prediction (learning from auditory-task data to classify data from the written-word-task, or vice versa) suffered from a performance penalty, achieving 65-75% (still individually significant at p « 0.05). We carried out several follow-on analyses to investigate the reason for this shortfall, concluding that distributional differences in neither time nor space alone could account for it. Rather, combined spatio-temporal patterns of activity need to be identified for successful cross-session learning, and this suggests that feature selection strategies could be modified to take advantage of this.
Resumo:
This paper emerged from work supported by EPSRC grant GR/S84354/01 and proposes a method of determining principal curves, using spline functions, in principal component analysis (PCA) for the representation of non-linear behaviour in process monitoring. Although principal curves are well established, they are difficult to implement in practice if a large number of variables are analysed. The significant contribution of this paper is that the proposed method has minimal complexity, assuming simple spline geometry, thus enabling efficient computation. The paper provides a foundation for further work where multiple curves may be required to represent underlying non-linear information in complex data.
Resumo:
This paper proposes a fast moving window algorithm for QR and Cholesky decompositions by simultaneously applying data updating and downdating. The developed procedure is based on inner products and entails a similar downdating to that of the Chambers’ approach. For adding and deleting one row of data from the original matrix, a detailed analysis shows that the proposed algorithm outperforms existing ones in terms or computational efficiency, if the number of columns exceeds 7. For a large number of columns, the proposed algorithm is numerically superior compared to the traditional sequential technique.
Resumo:
OBJECTIVE - To evaluate an algorithm guiding responses of continuous subcutaneous insulin infusion (CSII)-treated type 1 diabetic patients using real-time continuous glucose monitoring (RT-CGM). RESEARCH DESIGN AND METHODS - Sixty CSII-treated type 1 diabetic participants (aged 13-70 years, including adult and adolescent subgroups, with A1C =9.5%) were randomized in age-, sex-, and A1C-matched pairs. Phase 1 was an open 16-week multicenter randomized controlled trial. Group A was treated with CSII/RT-CGM with the algorithm, and group B was treated with CSII/RT-CGM without the algorithm. The primary outcome was the difference in time in target (4-10 mmol/l) glucose range on 6-day masked CGM. Secondary outcomes were differences in A1C, low (=3.9 mmol/l) glucose CGM time, and glycemic variability. Phase 2 was the week 16-32 follow-up. Group A was returned to usual care, and group B was provided with the algorithm. Glycemia parameters were as above. Comparisons were made between baseline and 16 weeks and 32 weeks. RESULTS - In phase 1, after withdrawals 29 of 30 subjects were left in group A and 28 of 30 subjects were left in group B. The change in target glucose time did not differ between groups. A1C fell (mean 7.9% [95% CI 7.7-8.2to 7.6% [7.2-8.0]; P <0.03) in group A but not in group B (7.8% [7.5-8.1] to 7.7 [7.3-8.0]; NS) with no difference between groups. More subjects in group A achieved A1C =7% than those in group B (2 of 29 to 14 of 29 vs. 4 of 28 to 7 of 28; P = 0.015). In phase 2, one participant was lost from each group. In group A, A1C returned to baseline with RT-CGM discontinuation but did not change in group B, who continued RT-CGM with addition of the algorithm. CONCLUSIONS - Early but not late algorithm provision to type 1 diabetic patients using CSII/RT-CGM did not increase the target glucose time but increased achievement of A1C =7%. Upon RT-CGM cessation, A1C returned to baseline. © 2010 by the American Diabetes Association.
Resumo:
We consider the problem of self-healing in reconfigurable networks e.g., peer-to-peer and wireless mesh networks. For such networks under repeated attack by an omniscient adversary, we propose a fully distributed algorithm, Xheal, that maintains good expansion and spectral properties of the network, while keeping the network connected. Moreover, Xheal does this while allowing only low stretch and degree increase per node. The algorithm heals global properties like expansion and stretch while only doing local changes and using only local information. We also provide bounds on the second smallest eigenvalue of the Laplacian which captures key properties such as mixing time, conductance, congestion in routing etc. Xheal has low amortized latency and bandwidth requirements. Our work improves over the self-healing algorithms Forgiving tree [PODC 2008] andForgiving graph [PODC 2009] in that we are able to give guarantees on degree and stretch, while at the same time preserving the expansion and spectral properties of the network.
Resumo:
We study the behaviour of the glued trees algorithm described by Childs et al. in [1] under decoherence. We consider a discrete time reformulation of the continuous time quantum walk protocol and apply a phase damping channel to the coin state, investigating the effect of such a mechanism on the probability of the walker appearing on the target vertex of the graph. We pay particular attention to any potential advantage coming from the use of weak decoherence for the spreading of the walk across the glued trees graph. © 2013 Elsevier B.V.
Resumo:
In this paper, we have developed a low-complexity algorithm for epileptic seizure detection with a high degree of accuracy. The algorithm has been designed to be feasibly implementable as battery-powered low-power implantable epileptic seizure detection system or epilepsy prosthesis. This is achieved by utilizing design optimization techniques at different levels of abstraction. Particularly, user-specific critical parameters are identified at the algorithmic level and are explicitly used along with multiplier-less implementations at the architecture level. The system has been tested on neural data obtained from in-vivo animal recordings and has been implemented in 90nm bulk-Si technology. The results show up to 90 % savings in power as compared to prevalent wavelet based seizure detection technique while achieving 97% average detection rate. Copyright 2010 ACM.
Resumo:
In this paper, we propose a novel finite impulse response (FIR) filter design methodology that reduces the number of operations with a motivation to reduce power consumption and enhance performance. The novelty of our approach lies in the generation of filter coefficients such that they conform to a given low-power architecture, while meeting the given filter specifications. The proposed algorithm is formulated as a mixed integer linear programming problem that minimizes chebychev error and synthesizes coefficients which consist of pre-specified alphabets. The new modified coefficients can be used for low-power VLSI implementation of vector scaling operations such as FIR filtering using computation sharing multiplier (CSHM). Simulations in 0.25um technology show that CSHM FIR filter architecture can result in 55% power and 34% speed improvement compared to carry save multiplier (CSAM) based filters.