990 resultados para Datum
Resumo:
Geochemical analyses of extraordinarily well preserved late Aptian-early Albian foraminifera from Blake Nose (Ocean Drilling Program Site 1049) reveal rapid shifts of d18O, d13C, and 87Sr/88Sr in the subtropical North Atlantic that may be linked to a major planktic foraminifer extinction event across the Aptian/Albian boundary. The abruptness of the observed geochemical shifts and their coincidence with a sharp lithologic contact is explained as an artifact of a previously undetected hiatus of 0.8-1.4 million years at the boundary contact, but the values before and after the hiatus indicate that major oceanographic changes occurred at this time. 87Sr/88Sr increase by ~0.000200, d13C values decrease by 1.5 per mil to 2.2 per mil, and d18O values decrease by ~1.0 per mil (planktics) to 0.5 per mil (benthics) across the hiatus. Further, both 87Sr/88Sr ratios and d18O values during the Albian are anomalously high. The 87Sr/88Sr values deviate from known patterns to such a degree that an explanation requires either the presence of inter-basin differences in seawater 87Sr/88Sr during the Albian or revision of the seawater curve. For d18O, planktic values in some Aptian samples likely reflect a diagenetic overprint, but preservation is excellent in the rest of the section. In well preserved material, benthic foraminiferal values are largely between 0.5 and 0.0 per mil and planktic samples are largely between 0.0 per mil to -1.0 per mil, with a brief excursion to -2.0 per mil during OAE 1b. Using standard assumptions for Cretaceous isotopic paleotemperature calculations, the d18O values suggest bottom water temperatures (at ~1000 -1500 m) of 8-10°C and surface temperatures of 10-14°C, which are 4-6°C and 10-16°C cooler, respectively, than present-day conditions at the same latitude. The cool subtropical sea surface temperature estimates are especially problematic because other paleoclimate proxy data for the mid-Cretaceous and climate model predictions suggest that subtropical sea surface temperatures should have been the same as or warmer than at present. Because of their exquisite preservation, whole scale alteration of the analyzed foraminifera is an untenable explanation. Our proposed solution is a high evaporative fractionation factor in the early Albian North Atlantic that resulted in surface waters with higher d18O values at elevated salinities than commonly cited in Cretaceous studies. A high fractionation factor is consistent with high rates of vapor export and a vigorous hydrological cycle and, like the Sr isotopes, implies limited connectivity among the individual basins of the Early Cretaceous proto-Atlantic ocean.
Resumo:
Detection of climate response to orbital forcing during Cenozoic long-term global cooling is a key to understanding the behavior of Earth's icehouse climate. Sedimentary rhythm, which is a rhythmic or cyclic variation in the sequence of sediments and sedimentary rocks, is useful for quantitative reconstruction of Earth's evolution during geological time. In this study, we attempt to (1) identify sources of natural gamma ray (NGR) emissions of core recovered during Ocean Drilling Program (ODP) Leg 186 by analyses of physical properties, major element concentrations, diatom abundances, and total organic carbon contents, (2) integrate whole-core NGR intensity of recovered core with wireline logging NGR measurements in order to construct a continuous sedimentary sequence, and (3) discuss changes in the NGR signal in the time domain. This attempt gives us preliminary information to discuss climate stability in relation to orbital forcing thorough geologic time. NGR values are obtained mainly by indirectly measuring the amount of terrigenous minerals including potassium and related elements in the sediments. NGR intensity is also affected by high porosity, which in these sediments was related to the amount of diatom valves. NGR signals might be a proxy of the intensity of the East Asian monsoon off Sanriku. A continuous sedimentary record was constructed by integration of the whole-core NGR intensity measured in sediments obtained from the drilled holes with that measured directly in the borehole by wireline logging, then using a stratigraphic age model to convert to a time series covering 1.3-9.7 Ma with a short break at ~5 Ma. High sedimentation rate (H) stages were identified in the sequence, related to intervals of low-amplitude precession and eccentricity variations. The transition of the dominant periodicities through the four H stages may correlate to major shifts in the climate system, including the onset of major Northern Hemisphere glaciation, the initial stage of the East Asian monsoon intensification, and the onset of the East Asian monsoon with uplift of the Himalayas and the Tibetan Plateau.
Resumo:
A major goal of Ocean Drilling Program (ODP) Leg 130 was to drill four sites down the northeastern flank of the Ontong Java Plateau to collect a series of continuous sedimentary sequences that would provide a depth transect of Neogene sediments. In particular, the study of the sediments recovered along the depth transect is expected to yield high-resolution stratigraphic, geochemical, and physical properties records across intervals of major paleoceanographic changes by evaluating variations of primary sedimentological and paleoceanographic indicators (e.g., carbonates, isotopes, grain size, microfossil assemblages, etc.). This data report presents the results of highresolution (3-5 Ka sample intervals) analyses of carbonate concentration and bulk sediment grain size at Sites 803-806 for the time interval from 2 Ma to the present.
Resumo:
Ocean Drilling Program (ODP) Leg 210 is one of very few deep-sea legs drilled along the eastern Canadian continental margin. Most other drilling on this margin has been carried out by the petroleum industry on the shallow-water regions of the Scotian shelf and the Grand Banks (see Doeven, 1983, for nannofossil studies). Deep Sea Drilling Project (DSDP) Leg 12 Site 111 and ODP Leg 105 Site 647 were drilled in the general vicinity of Leg 210 but recovered no appreciable Lower Cretaceous (Albian-Cenomanian) sediments. Site 111 yielded indurated limestones dated tentatively as late Albian-early Cenomanian, whereas Site 647 encountered no Albian-Cenomanian sediments. Two sites (Sites 1276 and 1277) were drilled during Leg 210 in the Newfoundland Basin with the primary objective of recovering basement rocks to elucidate the rifting history of the North Atlantic Basin. The location for Leg 210 was selected because it is conjugate to the Iberia margin, which was drilled extensively during DSDP/ODP Legs 47B, 103, 149, and 173. A secondary but equally important objective was to recover the overlying sediments with the purpose of studying the postrift sedimentation history of this margin.
Resumo:
A high-resolution record of foraminiferal fragmentation (a dissolution indicator) for the last 250 k.y. (isotopic Stages 1 to 7) is identified in the upper 61.9 m of Ocean Drilling Program (ODP) Hole 828A, west Vanuatu. This record is comparable in detail to the atmospheric CO2 record and the d18O stack. Phase shifts between preservation spikes and maximum ice volumes (d18O of Globigerinoides sacculifer) are analogous to those on Ontong Java Plateau. Mass spectrometer (AMS14C) dating of a sample taken at the base of dissolution cycle B1 and the position of the last glacial maximum indicates a lag in time of ~8 k.y. in the Vanuatu region for the last glacial termination. When dissolution spikes are compared with minimum ice volumes there is no phase shift for the last two glacial terminations. The difference between Vanuatu and Ontong Java Plateau may be explained by local CO2 sinks and the interplay between intermediate and deep water masses. Terrigenous input increasingly affected sediment of Hole 828A on the North d'Entrecasteaux Ridge (NDR) as it approached Espiritu Santo Island. Mud and silt suspended in mid-water flows become important after 125 ka, while turbidites bypass the New Hebrides Trench only towards the last glacial maximum (LGM). Terrigenous supply seems to affect the lysocline profile that changed from an "open ocean" to a "near continent" type, thus favoring dissolution. Fragmentation of planktonic foraminifers is a more sensitive indicator of lysocline variations than is foraminiferal susceptibility to dissolution, the foraminiferal dissolution index, the abundance of benthic foraminifers, or CaCO3 content. A modern foraminiferal lysocline for the neighboring area (between 10°S and 30°S, and 160°E and 180°E) is found at 3.1 km below sea level, compared to west Vanuatu where it is shallower. The past lysocline level was deeper than 3086 m during intervals of dissolution minima, and ranged from ~2550 to 3000 m during intervals of dissolution maxima. The high sedimentation rates (in the order of 10 to 50 cm/k.y.) found in Hole 828A offer a great potential for future high-resolution studies either in this hole or other western localities along the NDR. Areas of high sedimentation near continental regions have been discarded for paleoceanographic and/or paleoclimatic studies. Nonetheless, conditions analogous to those found in Hole 828A are expected to occur in many trench areas around the world where mid-water flows have preserved as yet undiscovered fine high-resolution sedimentary records.
Resumo:
Un plan cartográfico es un proceso contradictorio en el cual intervienen decisiones técnicas y políticas que pueden cambiar e incluso modificar los objetivos iniciales del plan. Sin embardo, la historiografía clásica de la cartografía sostiene que la toma de tales decisiones es el resultado de medidas únicamente científicas y técnicas en las que no existen intereses ni contradicciones políticas. En este trabajo intentamos rastrear -en las etapas de la producción cartográfica argentina- los momentos en los que la ciencia y la política se entrelazan de tal manera que son constitutivas de la ciencia cartográfica. Para ello tomamos los proyectos cartográficos del IGM: el Plan de la Carta y la Carta Militar Provisional; y la determinación geodésica del DATUM altimétrico que se llevó a cabo en torno a la Comisión para la Medición del Arco de Meridiano
Resumo:
During Ocean Drilling Program Leg 199 a high-resolution (~1-2 cm/k.y.) biogenic sediment record from the late Paleocene to the early Miocene was recovered, containing an uninterrupted set of geomagnetic chrons as well as a detailed record of calcareous and siliceous biostratigraphic datum events. Shipboard lithologic proxy measurements and shore-based determinations of CaCO3 revealed regular cycles that can be attributed to climatic forcing. Discovering drill sites with well defined magneto- and biostratigraphic records that also show clear lithologic cycles is rare and valuable and creates the opportunity to develop a detailed stratigraphic intersite correlation, providing the basis to study paleoceanographic processes and mass accumulation rates at high resolution. Here we present extensive postcruise work that extends the shipboard composite depth stratigraphy by providing a high-resolution revised meters composite depth (rmcd) scale to compensate for depth distortion within individual cores. The depth-aligned data were then used to generate stacked records of lithologic proxy measurements. Making use of the increased signal-to-noise ratio in the stacked records, we then proceeded to generate a detailed site-to-site correlation between Sites 1218 and 1219 in order to decrease the depth uncertainty for magneto- and biostratigraphic datums. Stacked lithologic proxy records in combination with discrete measurements of CaCO3 were then exploited to calculate high-resolution carbonate concentration curves by regression of the multisensor track data with discrete measurements. By matching correlative features between the cores and wireline logging data, we also rescaled our core rmcd back to in situ depths. Our study identifies lithology-dependent core expansion due to unloading as the mechanism of varying stratigraphic thicknesses between cores.
Resumo:
The Quaternary history of metastable CaCO3 input and preservation within Antarctic Intermediate Water (AAIW) was examined by studying sediments from ODP Holes 818B (745 mbsl) and 817A (1015 mbsl) drilled in the Townsville Trough on the southern slope of the Queensland Plateau. These sites lie within the core of modern AAIW, and near the aragonite saturation depth (~1000 m). Thus, they are well positioned to monitor chemical changes that may have occurred within this watermass during the past 1.6 m.y. The percent of fine aragonite content, percent of fine magnesian calcite content, and percent of whole pteropods (>355 µm) were used to separate the fine aragonite input signal from the CaCO3 preservation signal. Stable d18O and d13C isotopic ratios were determined for the planktonic foraminifer Globigerinoides sacculifer and, in Hole 818B, for the benthic foraminifer Cibicidoides spp. to establish the oxygen isotope stratigraphy and to study the relationship between intermediate and shallow water d13C of Sum CO2 and the relationship between benthic foraminiferal d13C and CaCO3 preservation within intermediate waters of the Townsville Trough. Data were converted from depth to age using oxygen isotope stratigraphy, nannostratigraphy, and foraminiferal biostratigraphy. Several long hiatuses and the absence of magnetostratigraphy did not permit time series analysis. The principal results of the CaCO3 preservation study include the following (1) a general increase in CaCO3 preservation between 0.9 and 1.6 Ma; (2) a CaCO3 dissolution maximum near 0.9 Ma, primarily expressed in the Hole 818B fine aragonite record; (3) an abrupt and permanent increase of fine aragonite content between 0.86 and 0.875 Ma in both Holes 818B and 817A probably reflecting a dramatic increase of fine carbonate sediment production on the Queensland Plateau; (4) an improvement in CaCO3 preservation near 0.87 Ma, which accompanied the increase of sediment input, indicated by the first appearance of whole pteropods in the deeper Hole 817A and a "spike" in the percent whole pteropods in Hole 818B; (5) a period of strong CaCO3 dissolution during the mid-Brunhes Chron from 0.36 to 0.41 Ma; and (6) a complex CaCO3 preservation pattern between 0.36 Ma and the present characterized by a general increase in CaCO3 preservation through time with good preservation during interglacial stages and poor preservation during glacial stages. The long-term aragonite preservation histories for Holes 818B and 817A appear to be similar in general shape, although different in detail, to CaCO3 preservation records from the deep Indian and central equatorial Pacific oceans as well as from intermediate water sites in the Bahamas and the Maldives. All of these areas have experienced CaCO3 dissolution at about 0.9 Ma and during the mid-Brunhes Chron. However, the late Quaternary (0 to 0.36 Ma) glacial to interglacial preservation pattern in Holes 818B and 817A is out of phase with CaCO3 preservation records for sediments deposited in Pacific deep and bottom waters. The sharp increase in bank production and export from the Queensland Plateau and the coincident improvement of CaCO3 preservation between 0.86 and 0.875 Ma may have been synchronous with the initiation of the Great Barrier Reef and roughly coincides with an increase in carbonate accumulation on the Bahama banks, in the western North Atlantic Ocean, and on Mururoa atoll, in the central South Pacific Ocean. The development of these reef systems during the middle Quaternary may be related to the transition in the frequency and amplitude of global sea level change from 41 k.y. low amplitude cycles prior to 0.9 Ma to 100 k.y. high amplitude cycles after 0.73 Ma. Carbon isotopic analyses show that benthic foraminiferal d13C values (Cibicidoides spp.) have been heavier than planktonic foraminiferal d13C values (G. sacculifer) throughout most of the last 0.54 m.y., which may indicate that 13C-enriched intermediate water (AAIW) occupied the Townsville Trough during much of the late Quaternary. Furthermore, both planktonic and benthic foraminiferal d13C values are often observed to be heaviest during interglacial to glacial transitions, and lightest during glacial to interglacial transitions. We suggest that this pattern is the result of changes in the preformed d13C of Sum CO2 of AAIW and may reflect changes in nutrient utilization by primary producers in Antarctic surface waters, changes in the d13C of upwelled Circumpolar Deep Water, or changes in the extent and/or temperature of equilibration between surface water and atmospheric CO2 within the Antarctic Polar Frontal Zone (the source area for AAIW). Finally, the poor correlation between percent of whole pteropods (aragonite preservation) and d13C of Cibicidoides spp. may be the result of a decoupling of d13C from CO2 due to the numerous and complex variables that combine to produce the preformed d13C of AAIW.
Resumo:
Calcareous nannofossils were studied in sedimentary successions recovered from two holes on the Detroit Seamount in the northwestern Pacific Ocean. Preservation of calcareous nannoflora assemblages varies from poor to good throughout the sediments recovered from both Holes 1203A and 1204A. Biostratigraphic investigation allowed the identification of 19 nannofossil zones in Hole 1203A and 7 in Hole 1204A. The sedimentary cover in Hole 1203A ranges from lower Eocene (Zone NP12) to upper Miocene (Zone NN9). The sedimentary interval investigated directly overlying the basalt recovered at Hole 1204A is late Campanian in age (Zones CC22-CC23), and the top of the section is middle Eocene (Zone NP15) in age. Major unconformities were observed in Hole 1204A between upper Campanian (Zones CC22-CC23) and lower Thanetian (Zone NP7) sediments and between upper Thanetian (Zone NP8) and upper Ypresian (Zone NP12) sediments.
Resumo:
The Turonian (93.5 to 89.3 million years ago) was one of the warmest periods of the Phanerozoic eon, with tropical sea surface temperatures over 35°C. High-amplitude sea-level changes and positive d18O excursions in marine limestones suggest that glaciation events may have punctuated this episode of extreme warmth. New d18O data from the tropical Atlantic show synchronous shifts ~91.2 million years ago for both the surface and deep ocean that are consistent with an approximately 200,000-year period of glaciation, with ice sheets of about half the size of the modern Antarctic ice cap. Even the prevailing supergreenhouse climate was not a barrier to the formation of large ice sheets, calling into question the common assumption that the poles were always ice-free during past periods of intense global warming.
Resumo:
Este trabajo presenta una reflexión metodológica relativa al uso de escalas de estimaciones sumadas o Likert en la evaluación del desempeño docente en el contexto universitario. Se presentan antecedentes en el marco de las prescripciones técnicas para este tipo de escalamientos, así como un conjunto de observaciones referidas a la pertinencia de su aplicación con fines evaluativos y a sus limitaciones en tanto herramienta para la generación de conocimiento. Se concluye que la escala de Likert puede ser utilizada en contexto evaluativos, atendiendo al conjunto de requerimientos ligados a su aplicación y tratamiento analítico-interpretativo, reconociendo los problemas insalvables que presenta, de manera de sopesar y relativizar la construcción del dato numeral. De este modo, se hace explícita la crítica al carácter "quantofrénico" y "artefactual" que acompaña su aplicación, y que contradictoriamente se inscribe en un discurso que sitúa la evaluación docente en el marco de políticas de calidad en educación superior
Resumo:
An integrated framework of magnetostratigraphy, calcareous microfossil bio-events, cyclostratigraphy and d13C stratigraphy is established for the upper Campanian-Maastrichtian of ODP Hole 762C (Exmouth Plateau, Northwestern Australian margin). Bulk-carbonate d13C events and nannofossil bio-events have been recorded and plotted against magnetostratigraphy, and provided absolute ages using the results of the cyclostratigraphic study and the recent astronomical calibration of the Maastrichtian. Thirteen carbon-isotope events and 40 nannofossil bio-events are recognized and calibrated with cyclostratigraphy, as well as 14 previously published foraminifer events, thus constituting a solid basis for large-scale correlations. Results show that this site is characterized by a nearly continuous sedimentation from the upper Campanian to the K-Pg boundary, except for a 500 kyr gap in magnetochron C31n. Correlation of the age-calibrated d13C profile of ODP Hole 762C to the d13C profile of the Tercis les Bains section, Global Stratotype Section and Point of the Campanian-Maastrichtian boundary (CMB), allowed a precise recognition and dating of this stage boundary at 72.15 ± 0.05 Ma. This accounts for a total duration of 6.15 ± 0.05 Ma for the Maastrichtian stage. Correlation of the boundary level with northwest Germany shows that the CMB as defined at the GSSP is ~800 kyr younger than the CMB as defined by Belemnite zonation in the Boreal realm. ODP Hole 762C is the first section to bear at the same time an excellent recovery of sediments throughout the upper Campanian-Maastrichtian, a precise and well-defined magnetostratigraphy, a high-resolution record of carbon isotope events and calcareous plankton biostratigraphy, and a cyclostratigraphic study tied to the La2010a astronomical solution. This section is thus proposed as an excellent reference for the upper Campanian-Maastrichtian in the Indian Ocean.
Resumo:
The silicoflagellate taxa obtained in IODP Expedition 302 (ACEX) were identified and counted in order to establish the silicoflagellate biostratigraphy in the central Arctic Ocean. These microfossils in the ACEX samples were preserved in the Lithology Units 1/6 and 2, which are dark silty clay and biosiliceous ooze, respectively. The silicoflagellate skeletons in the ACEX samples are assigned to 56 taxa. Seven taxa were described as new species, which were abundant in Lithology Unit 2. Comparison with several study cases outside the Eocene Arctic Ocean suggested that the silicoflagellate assemblages in ACEX were unique in Lithology Unit 2. The dominance of silicoflagellate taxa varied throughout the lithological section. Based on the cluster analysis by Morishita similarity index C(Lambda), the silicoflagellate assemblageswere divided into nine assemblage groups. The silicoflagellate datum event of the first occurrence of Corbisema hexacantha in the lower part of Lithology Unit 1/6 is regarded. Based on the datum events for silicoflagellate and palynomorphs, the assigned epoch of Lithology Units 1/6 and 2 is the middle Eocene.