999 resultados para Candeina nitida
Resumo:
The Indian monsoon system is an important climate feature of the northern Indian Ocean. Small variations of the wind and precipitation patterns have fundamental influence on the societal, agricultural, and economic development of India and its neighboring countries. To understand current trends, sensitivity to forcing, or natural variation, records beyond the instrumental period are needed. However, high-resolution archives of past winter monsoon variability are scarce. One potential archive of such records are marine sediments deposited on the continental slope in the NE Arabian Sea, an area where present-day conditions are dominated by the winter monsoon. In this region, winter monsoon conditions lead to distinctive changes in surface water properties, affecting marine plankton communities that are deposited in the sediment. Using planktic foraminifera as a sensitive and well-preserved plankton group, we first characterize the response of their species distribution on environmental gradients from a dataset of surface sediment samples in the tropical and sub-tropical Indian Ocean. Transfer functions for quantitative paleoenvironmental reconstructions were applied to a decadal-scale record of assemblage counts from the Pakistan Margin spanning the last 2000?years. The reconstructed temperature record reveals an intensification of winter monsoon intensity near the year 100 CE. Prior to this transition, winter temperatures were >1.5°C warmer than today. Conditions similar to the present seem to have established after 450 CE, interrupted by a singular event near 950 CE with warmer temperatures and accordingly weak winter monsoon. Frequency analysis revealed significant 75-, 40-, and 37-year cycles, which are known from decadal- to centennial-scale resolution records of Indian summer monsoon variability and interpreted as solar irradiance forcing. Our first independent record of Indian winter monsoon activity confirms that winter and summer monsoons were modulated on the same frequency bands and thus indicates that both monsoon systems are likely controlled by the same driving force.
Resumo:
The distribution of diatoms, coccolithophores and planktic foraminifers mirrored the hydrographic and trophic conditions of the surface ocean (0-100 m) across the upwelling area off the Oman coast to the central Arabian Sea during May/June 1997 and July/August 1995. The number of diatoms was increased in waters with local temperature minimum and enhanced nutrient concentration (nitrate, phosphate, silicate) caused by upwelling. Vegetative cells of Chaetoceros dominated the diatom assemblage in the coastal upwelling area. Towards the more nutrient depleted and stratified surface waters to the southeast, the number of diatoms decreased, coccolithophore and planktic foraminiferal numbers increased, and floral and faunal composition changed. In particular, the transition between the eutrophic upwelling region off Oman and the oligotrophic central Arabian Sea was marked by moderate nutrient concentration, and high coccolithophore and foraminifer numbers. Florisphaera profunda, previously often referred as a 'lower-photic-zone-species', was frequent in water depths as shallow as 20 m, and at high nutrient concentration up to 14 µmol NO3/l and 1.2 µmol PO4/. To the oligotrophic southeast of the divergence, cell densities of coccolithophores declined and Umbellosphaera irregularis prevailed throughout the water column down to 100 m depth. In general, total coccolithophore numbers were limited by nutrient threshold concentration, with low numbers (<10*10**3 cells/l) at high [NO3] and [PO4], and high numbers (>70*10**3 cells/l) at low [NO3] and [PO4]. The components of the complex microplankton succession, diatoms, coccoliths and planktic foraminifers (and possibly others), should ideally be used as a combined paleoceanographic proxy. Consequently, models on plankton ecology should be resolved at least for the seasonality, to account for the bias of paleoceanographic transfer calculations.
Resumo:
The late Neogene was a time of cryosphere development in the northern hemisphere. The present study was carried out to estimate the sea surface temperature (SST) change during this period based on the quantitative planktonic foraminiferal data of 8 DSDP sites in the western Pacific. Target factor analysis has been applied to the conventional transfer function approach to overcome the no-analog conditions caused by evolutionary faunal changes. By applying this technique through a combination of time-slice and time-series studies, the SST history of the last 5.3 Ma has been reconstructed for the low latitude western Pacific. Although the present data set is close to the statistical limits of factor analysis, the clear presence of sensible variations in individual SST time-series suggests the feasibility and reliability of this method in paleoceanographic studies. The estimated SST curves display the general trend of the temperature fluctuations and reveal three major cool periods in the late Neogene, i.e. the early Pliocene (4.7 3.5 Ma), the late Pliocene (3.1-2.7 Ma), and the latest Pliocene to early Pleistocene (2.2-1.0 Ma). Cool events are reflected in the increase of seasonality and meridional SST gradient in the subtropical area. The latest Pliocene to early Pleistocene cooling is most important in the late Neogene climatic evolution. It differs from the previous cool events in its irreversible, steplike change in SST, which established the glacial climate characteristic of the late Pleistocene. The winter and summer SST decreased by 3.3-5.4°C and 1.0 2.1C in the subtropics, by 0.9°C and 0.6C in the equatorial region, and showed little or no cooling in the tropics. Moreover, this cooling event occurred as a gradual SST decrease during 2.2 1.0 Ma at the warmer subtropical sites, while that at cooler subtropical site was an abrupt SST drop at 2.2 Ma. In contrast, equatorial and tropical western Pacific experienced only minor SST change in the entire late Neogene. In general, subtropics was much more sensitive to climatic forcing than tropics and the cooling events were most extensive in the cooler subtropics. The early Pliocene cool periods can be correlated to the Antarctic ice volume fluctuation, and the latest Pliocene early Pleistocene cooling reflects the climatic evolution during the cryosphere development of the northern hemisphere.
Resumo:
The extract of Adinandra nitida leaves, named as Shiyacha in China, was studied by high performance liquid chromatography (HPLC)-ultraviolet detection-electrospray ionisation (ESI) tandem mass spectrometry (MS). Under the optimized condition, the analysis could be finished in 45 min on a Hypersil C18 column combined with negative ion detection using information-dependent acquisition (IDA) mode of a Q TRAP (TM) instrument. Six flavonoids were identified as epicatechin, rhoifolin, apigenin, quercitrin, camellianin A, and camellianin B among which rhoifolin was for the first time found in Shiyacha. And the fragment pathways of these flavonoids were elucidated. Furthermore, with epicatechin, rhoifolin, and apigenin as markers, the quality control method for Shiyacha and its relevant product was firstly established. Calibration linearity was good (R-2 > 0.9992) over a three to four orders of magnitude concentration range with an S/N = 3 detection limit of 2.5 ng. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
O presente trabalho objetivou avaliar o enraizamento de estacas de P. nitida, utilizando dois tipos de estacas (com 1 e 2 gemas) e 4 doses de ácido indolbutírico (AIB) (0; 1.000; 3.000 e 5.000 mgL-1) com imersão lenta (5 segundos), com a finalidade de utilizá-las como porta-enxerto do maracujazeiro-azedo. O delineamento experimental utilizado foi inteiramente casualizado, em esquema fatorial 4x2 (concentrações de AIB x número de gemas na estaca), com quatro repetições de 10 estacas, totalizando 320 estacas. As estacas foram dispostas em bandejas plásticas, contendo vermiculita expandida de textura média, e mantidas sob sistema de nebulização intermitente, por 25 dias. As doses de AIB testadas influenciaram na sobrevivência, enraizamento das estacas e número e comprimento de raízes; e o número de gemas não influenciou no enraizamento de estacas.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)