Sea-surface reconstructions of the western Pacific Ocean during the last 5.3 million years


Autoria(s): Wang, Luejiang
Cobertura

MEDIAN LATITUDE: 16.923047 * MEDIAN LONGITUDE: 152.048976 * SOUTH-BOUND LATITUDE: -0.498700 * WEST-BOUND LONGITUDE: 124.650800 * NORTH-BOUND LATITUDE: 32.441800 * EAST-BOUND LONGITUDE: -74.400000 * DATE/TIME START: 1957-07-29T00:00:00 * DATE/TIME END: 1982-05-23T00:00:00

Data(s)

08/09/1994

Resumo

The late Neogene was a time of cryosphere development in the northern hemisphere. The present study was carried out to estimate the sea surface temperature (SST) change during this period based on the quantitative planktonic foraminiferal data of 8 DSDP sites in the western Pacific. Target factor analysis has been applied to the conventional transfer function approach to overcome the no-analog conditions caused by evolutionary faunal changes. By applying this technique through a combination of time-slice and time-series studies, the SST history of the last 5.3 Ma has been reconstructed for the low latitude western Pacific. Although the present data set is close to the statistical limits of factor analysis, the clear presence of sensible variations in individual SST time-series suggests the feasibility and reliability of this method in paleoceanographic studies. The estimated SST curves display the general trend of the temperature fluctuations and reveal three major cool periods in the late Neogene, i.e. the early Pliocene (4.7 3.5 Ma), the late Pliocene (3.1-2.7 Ma), and the latest Pliocene to early Pleistocene (2.2-1.0 Ma). Cool events are reflected in the increase of seasonality and meridional SST gradient in the subtropical area. The latest Pliocene to early Pleistocene cooling is most important in the late Neogene climatic evolution. It differs from the previous cool events in its irreversible, steplike change in SST, which established the glacial climate characteristic of the late Pleistocene. The winter and summer SST decreased by 3.3-5.4°C and 1.0 2.1C in the subtropics, by 0.9°C and 0.6C in the equatorial region, and showed little or no cooling in the tropics. Moreover, this cooling event occurred as a gradual SST decrease during 2.2 1.0 Ma at the warmer subtropical sites, while that at cooler subtropical site was an abrupt SST drop at 2.2 Ma. In contrast, equatorial and tropical western Pacific experienced only minor SST change in the entire late Neogene. In general, subtropics was much more sensitive to climatic forcing than tropics and the cooling events were most extensive in the cooler subtropics. The early Pliocene cool periods can be correlated to the Antarctic ice volume fluctuation, and the latest Pliocene early Pleistocene cooling reflects the climatic evolution during the cryosphere development of the northern hemisphere.

Formato

application/zip, 17 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.702146

doi:10.1594/PANGAEA.702146

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Wang, Luejiang (1994): Sea surface temperature history of the low latitude western Pacific during the last 5.3 million years. Palaeogeography, Palaeoclimatology, Palaeoecology, 108(3-4), 379-436, doi:10.1016/0031-0182(94)90244-5

Palavras-Chave #20-200; 30-289; 31-292; 31-296; 58-445; 59-451; 7-62A; 86-577; Age; AGE; B. digitata; B. praedigitata; Beella digitata; Beella praedigitata; Beella sp.; C. nitida; Candeina nitida; Comm 2; Comm 3; Comm 4; Comment; Comment 2 (continued); Comment 3 (continued); Comment 4 (continued); Counting >154 µm fraction; Deep Sea Drilling Project; Depth; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP; estimation 1; estimation 2; estimations by Imbrie and Kipp (1971); estimations by target transfer functions, linear functions, TFM-1; estimations by target transfer functions, linear functions, TFM-2; estimations by target transfer functions, linear functions, TFM-3; estimations by target transfer functions, non-linear functions, TFM-2; Foram bent; Foraminifera, benthic; Foraminifera, planktic; Foraminifera, planktic, fragments; Foraminifera, planktic indeterminata; Foram plankt; Foram plankt fragm; Foram plankt indet; G. acostaensis; G. aequilateralis; G. altispira; G. bermudezi; G. bollii; G. bulloides; G. calida; G. cf. bulloides; G. cf. incisa; G. conglobatus; G. conglomerata; G. conoidea; G. conomiozea; G. crassaformis; G. crassula; G. cyclostomus; G. decoraperta; G. dehiscens; G. elongatus; G. extremus; G. falconensis; G. fistulosus; G. globosa; G. glutinata; G. hirsuta; G. humerosa; G. inflata; G. limbata; G. marg evoluta; G. marg margaritae; G. marg primitivae; G. menardii; G. multicamerata; G. nepenthes; G. obliquus; G. pertenuis; G. picassiana; G. planispira; G. plesiotumida; G. pseudopima; G. puncticulata; G. pyramidata; G. ruber; G. sacculifer no sac; G. sacculifer sac; G. scitula; G. tenellus; G. tosaensis; G. truncatulinoides; G. tumida; G. tumida flexuosa; G. tumida tumida; G. ungulata; G. venezuelana; Globigerina bulloides; Globigerina calida; Globigerina cf. bulloides; Globigerina decoraperta; Globigerina falconensis; Globigerina nepenthes; Globigerina picassiana; Globigerinella aequilateralis; Globigerinita glutinata; Globigerinoides bollii; Globigerinoides bulloides; Globigerinoides conglobatus; Globigerinoides cyclostomus; Globigerinoides elongatus; Globigerinoides extremus; Globigerinoides fistulosus; Globigerinoides obliquus; Globigerinoides pyramidata; Globigerinoides ruber; Globigerinoides sacculifer no sac; Globigerinoides sacculifer sac; Globigerinoides tenellus; Globoquadrina altispira; Globoquadrina conglomerata; Globoquadrina dehiscens; Globoquadrina globosa; Globoquadrina venezuelana; Globorotalia acostaensis; Globorotalia bermudezi; Globorotalia cf. incisa; Globorotalia conoidea; Globorotalia conomiozea; Globorotalia crassaformis; Globorotalia crassula; Globorotalia hirsuta; Globorotalia humerosa; Globorotalia inflata; Globorotalia limbata; Globorotalia margaritae evoluta; Globorotalia margaritae margaritae; Globorotalia margaritae primitivae; Globorotalia menardii; Globorotalia multicamerata; Globorotalia pertenuis; Globorotalia planispira; Globorotalia plesiotumida; Globorotalia pseudopima; Globorotalia puncticulata; Globorotalia scitula; Globorotalia tosaensis; Globorotalia truncatulinoides; Globorotalia tumida; Globorotalia tumida flexuosa; Globorotalia tumida - Gr. menardii; Globorotalia tumida tumida; Globorotalia ungulata; Glomar Challenger; immature test; Label; Leg20; Leg30; Leg31; Leg58; Leg59; Leg7; Leg86; N. blowi; N. dutertrei; N. hexagona; N. pachyderma d; N. pachyderma s; N. pseudofoliata; Neogloboquadrina blowi; Neogloboquadrina dutertrei; Neogloboquadrina hexagona; Neogloboquadrina pachyderma dextral; Neogloboquadrina pachyderma sinistral; Neogloboquadrina pseudofoliata; North Pacific; North Pacific/BASIN; North Pacific/GUYOT; North Pacific/Philippine Sea/CONT RISE; North Pacific/Philippine Sea/RIDGE; North Pacific/RIDGE; O. bilobata; O. suturalis; O. universa; ODP sample designation; Orbulina bilobata; Orbulina suturalis; Orbulina universa; Ostrac; Ostracoda; P. obliquiloculata; P. praecursor; P. praespectabilis; P. primalis; P. spectabilis; PC; Piston corer; Pulleniatina obliquiloculata; Pulleniatina praecursor; Pulleniatina praespectabilis; Pulleniatina primalis; Pulleniatina spectabilis; questionable; Rad; Radiolarians; S. dehiscens; S. kochi; S. seminulina; Sa. dehiscens - Gs. sacculifer; Sample code/label; Sea surface temperature, summer; Sea surface temperature, winter; South Pacific/PLATEAU; Sphaeroidinella dehiscens; Sphaeroidinella spp.; Sphaeroidinellopsis kochi; Sphaeroidinellopsis seminulina; SST sum; SST win; Time interval 1, estimation 1; Time interval 1, estimation 2; Time slice 1, estimation 1; total; Transfer function applied in each time-interval, estimation 1; Transfer function applied in each time-interval, estimation 2; Turborotalia sp.; V12; V12-122; Vema
Tipo

Dataset