997 resultados para Calcareous nannoplankton
Resumo:
A biostratigraphically complete Cretaceous/Tertiary boundary was recovered during Ocean Drilling Program Leg 121. The boundary, cored in ODP Hole 752B on Broken Ridge, is the most expanded deep-sea section yet recovered by ODP/DSDP. The initial Danian subzone, CP la, spans nearly 5 m and the underlying uppermost Maestrichtian Nephrolithus frequens Zone extends 50 m below the boundary. The paleolatitude of Broken Ridge at Cretaceous/Tertiary time is estimated at 50°-55°S which includes this site among the latest in a series of complete or near complete high southern latitude Cretaceous/Tertiary boundary sections recovered by ODP (Leg 113 Site 690 and Leg 119 Site 738). The boundary at Site 752 lies at the base of a thick (6-6.5 m) volcanic ash unit composed of multiple ash layers which overlies indurated Maestrichtian chalks. Magnetostratigraphy indicates that the boundary lies within Subchron 29R, which is the case for all other known complete sections for which the polarity has been determined. Anomalous abundances of the trace element iridium are present at the boundary. A second iridium peak, 80 cm above the boundary, corresponds to an increase in redeposited Cretaceous nannofossils. The nannofossil succession is similar to that found at previously studied austral high-latitude ODP drill sites with few differences due to the more northerly location of this site. Individual nannofossil species were counted and placed into three categories. A plot of the percent abundance of Cretaceous, Tertiary, and 'survivor' groups illustrates the rapid replacement of the Cretaceous nannoflora by 'survivor' forms beginning at the boundary and the dominance of this latter group through the initial Danian biozone. This 'survivor' or opportunistic assemblage is then rapidly replaced by newly evolved Tertiary taxa. The assemblage of the uppermost Maestrichtian is biased toward dissolution-resistant forms such as Micula decussata. In those few intervals where preservation is good, the dissolution susceptible species, Prediscosphaera stoveri, is more prevalent and overall diversity of the assemblage is higher. The 'survivor' assemblage is dominated by Zygodiscus sigmoides and Thoracosphaera. The Tertiary assemblage consists of rare Biantholithus sparsus, the first of this group to appear. It is followed several meters upsection by Cruciplacolithus primus. Cruciplacolithus tenuis and small Prinsius spp. dominate the assemblage beginning at about 5 m above the boundary.
Resumo:
Sediments of the Equatorial Atlantic (core GeoB 1105-4) have been investigated for both calcareous dinoflagellates and organic-walled dinoflagellate cysts. In order to determine the ecological affinity of calcareous dinoflagellates the statistical methods of Detrended Correspondence Analysis (DCA) and Redundancy Analysis (RDA) were used. Utilising DCA, distribution patterns of calcareous dinoflagellates have been compared with those of the ecologically much better known organic-walled dinoflagellate cysts. This method was also used to determine which environmental gradients have a major influence on the species composition. By using existing environmental information based on benthic and planktic foraminifera, such as Sea Surface Temperature (SST) and stable oxygen and carbon isotopes, as well as information on the amount of Calcium Carbonate and Total Organic Carbon (TOC) in bottom sediments, these gradients could be interpreted in terms of productivity and glacial-interglacial trends. Using RDA, the direct relationships between the distribution patterns of calcareous dinoflagellates with the above mentioned external variables could be determined. For the studied region and time interval (141-6.7 ka) the calcareous dinoflagellates show enhanced abundances in periods with reduced productivity most probably related to decreased divergence and relatively stratified, oligotrophic oceanic conditions.
Resumo:
Quaternary sediments were recovered at all five sites drilled during Ocean Drilling Program (ODP) Leg 189 in the Tasmanian Gateway. Two of these sites lie north of the present-day Subtropical Front (STF), and three sites lie south of the STF. Quaternary sediments recovered at Sites 1168, 1170, 1171, and 1172 were studied in detail to determine the calcareous nannofossil biostratigraphy and construct an age model for these sediments. The Pliocene/Pleistocene boundary was identified by the last occurrence (LO) of Discoaster brouweri at Site 1172 and approximated by the LO of Calcidiscus macintyrei at the other sites because of a lack of discoasterids. A hiatus encompassing the entire Helicosphaera sellii Zone was tentatively identified at Sites 1168 and 1172 by the coincident LOs of C. macintyrei and H. sellii. Similar hiatuses have been noted at ODP Site 1127 on the Great Australian Bight, Deep Sea Drilling Project Site 282 off the Tasman subcontinent, and ODP Site 1165 in Prydz Bay, Antarctica.
Resumo:
The paleoenvironmental conditions through MIS 15-9 at the Mediterranean Ocean Drilling Program (ODP) Site 975 were interpreted by high resolution study of calcareous plankton assemblages compared with available d18O and d13C records and high resolution paleoclimate proxies from the Atlantic Ocean. Sea Surface Temperatures (SSTs) have been estimated from planktonic foraminiferal assemblages using the artificial neural networks method. Calcareous plankton varied dominantly on a glacial-interglacial scale as testified by the SST record, foraminiferal diversity, total coccolith abundance and changes in warm-water calcareous nannofossil taxa. A general increase in foraminiferal diversity and of total coccolith abundance is observed during interglacials. Warmest SSTs are reached during MIS 11, while MIS 12 and MIS 10 represent the coldest intervals of the studied record. During MIS 12, one of the most extreme glacials of the last million years, occurrence of Globorotalia inflata and of neogloboquadrinids indicates a shoaling of the interface between Atlantic inflowing and Mediterranean outflowing waters. Among calcareous nannofossils the distribution of Gephyrocapsa margereli-G. muellerae > 4 µm also supports a reduced Atlantic-Mediterranean exchange during MIS 12. Superimposed on glacial-interglacial variability, six short-terms coolings are recognized during MIS 12 and 10, which appear comparable in their distribution and amplitude to the Heinrich - type events documented in the Atlantic Ocean in the same interval. During these H-type events, N. pachyderma (s) and G. margereli-G. muellerae > 4 µm increase as a response to the enhanced inflow of cold Atlantic water into the Mediterranean via the Strait of Gibraltar. Mediterranean surface water hydrography appears to have been most severely affected at Termination V during the H-type event Ht4, possibly as a response to a large volume of Atlantic meltwater inflow via the Strait of Gibraltar and/or to freshwater/terrigenous input deriving from local mountain glaciers. Three additional SST coolings are recorded through MIS 14-16, but these are not well correlated with Heinrich - type events documented in the Atlantic Ocean in the same interval; during these cooling episodes only the subpolar Turborotalita quinqueloba increases. These results highlight the sensitive response of the Mediterranean basin to millennial-scale climate variations related to Northern Hemisphere ice-sheet instability and support the hypothesis that the tight connection between high latitude climate dynamics and Mediterranean sea surface water features can be traced through the Middle Pleistocene.
Resumo:
A total of 21 calcareous nannofossil datums was found in the upper Pliocene and Quaternary sediments recovered from the ocean floor of the North Atlantic during DSDP Leg 94. These datums were correlated to magnetostratigraphy, and ages were estimated by interpolation between magnetic reversals. Calcareous nannofossil assemblages from 549 samples recovered during ODP Leg 117 were studied in order to estimate the age of the sediments of Sites 720, 721, 722, and 731 drilled at the Indus Fan and the Owen Ridge in the Arabian Sea, Indian Ocean. We also showed that the datums above mentioned can be traced into the Indian Ocean. Two new species, namely Helicosphaera omanica and Reticulofenestra ampla, are described.
Resumo:
The distribution of Mesozoic calcareous nannofossils are tabulated for Holes 807C and 8O3D drilled on the Ontong Java Plateau in the western equatorial Pacific. Nannofossils were abundant but poorly preserved in Hole 803D and range from early Albian to Maastrichtian in age. A possibly complete and expanded K/T boundary interval yielded few diagnostic taxa because of the dissolution of Tertiary forms. The only nannofossil-bearing sample examined from Hole 803D contained the uppermost Maastrichtian zonal indicator Micula prinsii.
Resumo:
DSDP North Atlantic Site 608 yielded an excellent Miocene pelagic section which affords a further opportunity for elucidating the chronology of the calcareous nannofossil succession in the framework of magnetostratigraphic control. Most of the conventional (zonal) markers have been documented for this site and some of the earlier results are confirmed and refined. In addition several unconventional and less known markers have been added. The first two are the highest (last) occurrence of Sphenolithus delphix and Sphenolithus capricornutus at 23.6 Ma, which is immediately above the Oligocene-Miocene boundary as identified by the last occurrence of Reticulofenestra bisecta at 23.7 Ma. The next unconventional datum is the highest (last) occurrence of Ilselithina fusa at 22.8 Ma, which is also the highest (last) occurrence of Helicosphaera recta. Calcidiscus tropicus' lowest (first) occurrence is at 19.5 Ma, which is also the lowest occurrence of Sphenolithus belemnos, and Calcidiscus leptoporus' lowest (first) occurrence coincides with that of Sphenolithus heteromorphus at 18.5 Ma. Sphenolithus dissimilis' highest (last) occurrence is at 18.2 Ma and the Calcidiscus premacintyrei lowest (first) and highest (last) occurrences are, respectively, at 17.7 and 11.7 Ma. Discoaster braarudii occurs from 11.6 to 11.3 Ma and its highest (last) occurrence corresponds to that of Cyclicargolithus floridanus. Minylitha convallis occurs from 9.0 to 6.9 Ma. Within the range of Minylitha, at 8.0 Ma, a major shift occurs in reticulofenestrid placoliths from dominantly large (Reticulofenestra pseudoumbilicus) and medium size (Reticulofenestra minutula) species below to significant numbers of very small species (Dictyococcites productus and Gephyrocapsa) above. This is interpreted to be a major, though perhaps seasonal, change of productivity of the North Atlantic at Site 608. A new genus and species Cryptococcolithus takayamae, is described and a variety, Reticulofenestra pseudoumbilicus var. amplus is identified.
Resumo:
Five sites were drilled on the Iberia Abyssal Plain, west of the Iberian Peninsula. Four holes (897C, 897D, 899B, and 900A) yielded Eocene sediments that consist of turbidites and contourites. The Eocene section above the continental crust at Site 900 is continuous (from nannofossil Zones NP10 to NP20) and considerably expanded because of the site's relatively shallow depth, which remained consistently above the carbonate compensation depth (CCD). Sites 897 and 898, situated in deeper water above the ocean/continent transition, on the other hand, have noncontinuous, relatively short Eocene sections (from Zones NP14 to NP20 at Site 897 and from Zones NP19 to NP20 at Site 899). Nannofossils are abundant, diverse, and moderately to poorly preserved; they provide the primary means of dating the Eocene sediments recovered during Leg 149.
Resumo:
he early late Cretaceous (Cenomanian-early Turonian) is thought to have been one of the warmest periods of the Phanerozoic. This period was characterised by tropical sea surface temperatures of up to 36 °C and a pole-to-equator-gradient of less than 10 °C. The subsequent Turonian-Maastrichtian was characterised by a continuous climatic cooling, peaking in the Maastrichtian. This climatic cooling and the resulting palaeoceanographic changes had an impact on planktic primary producer communities including calcareous nannofossils. In order to gain a better understanding of these Cenomanian-Maastrichtian palaeoceanographic changes, calcareous nannofossils have been studied from the proto North Atlantic (Goban Spur, DSDP Sites 549, 551). In order to see potential differences between open oceanic and shelf dwelling nannofossils, the data from Goban Spur have been compared to findings from the European shelf (northern Germany). A total of 77 samples from Goban Spur were studied for calcareous nannofossils revealing abundant (mean 6.2 billion specimens/g sediment) and highly diverse (mean 63 species/sample) nannofossil assemblages. The dominant taxa are Watznaueria spp. (mean 30.7%), Prediscosphaera spp. (mean 18.3%), Zeugrhabdotus spp. (mean 8.3%), Retecapsa spp. (mean 7.2%) and Biscutum spp. (mean 6.6%). The Cenomanian assemblages of both Goban Spur (open ocean) and Wunstorf (shelf) are characterised by elevated abundances of high fertility taxa like Biscutum spp., Zeugrhabdotus spp. and Tranolithus orionatus. Early Turonian to Maastrichtian calcareous nannofossil assemblages of Goban Spur are, however, quite different to those described from European sections. Oceanic taxa like Watznaueria spp., Retecapsa spp. and Cribrosphearella ehrenbergii dominate in Goban Spur whereas the fertility indicators Biscutum spp. and T. orionatus are more abundant in the European shelf assemblages. This shift from a homogeneous distribution of calcareous nannofossils in the Cenomanian towards a heterogeneous one in the Turonian-Maastrichtian implies a change of the ocean circulation. The "eddy ocean" system of the Cenomanian was replaced by an oceanic circulation similar to the modern one in the Turonian-Maastrichtian, caused by the cooling. The increased pole-to-equator-gradients resulted in an oceanic circulation similar to the modern one.
Resumo:
Leipzig, Phil. Diss. v. 24. Febr. 1914, Ref. Chun, Pfeffer.
Resumo:
Includes index.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
This paper reports the effect of curing on the susceptibility of cementitious composites to carbonation using supercritical carbon dioxide. Samples made using a compression moulding technique were cured in water before and/or after carbonation and the effect on porosity, microstructure, solid phase assemblage and flexural strength was determined. In terms of development of mechanical strength, no benefit was gained from any period of pre- or post-carbonation curing regime. Yet samples cured prior to carbonation underwent minimal chemical reaction between supercritical carbon dioxide and calcium hydroxide, unhydrated cement or C-S-H. Thus there was no correlation between chemical degree of reaction and strength development. The effects responsible for the marked strength gain in supercritically carbonated samples must involve subtle changes in the microstructure of the C-S-H gel, not simple pore filling by calcium carbonate as is often postulated. © 2013 Elsevier Ltd. All rights reserved.\.
Resumo:
This work combined compression moulding with subsequent super-critical carbonation treatment (100 bar, 60 °C, 24 h) to fabricate cement and/or lime based ceramic composites with various aggregates. Composites were examined using mechanical testing, XRD, He pycnometry and thin-section petrography. Composites with lime-only binders were significantly weaker than those with cement-lime binders regardless of the degree of carbonation. Flexural strengths in excess of >10 MPa were routinely achieved in large (>100 mm) specimens. Aggregate type (calcareous vs. siliceous) had a significant effect on the microstructure and properties of the composites. Calcareous aggregates appear to augment the strength enhancement effected during super-critical carbonation by encouraging preferential precipitation of calcite at the binder-aggregate interface.