993 resultados para Babar, Hadronen, ISR, g-2
Resumo:
G-1 - Appeal Activity in the Public Assistance Programs - February 2007
Resumo:
Narcolepsy is a sleep disorder characterized by excessive daytime sleepiness and attacks of muscle atonia triggered by strong emotions (cataplexy). Narcolepsy is caused by hypocretin (orexin) deficiency, paralleled by a dramatic loss in hypothalamic hypocretin-producing neurons. It is believed that narcolepsy is an autoimmune disorder, although definitive proof of this, such as the presence of autoantibodies, is still lacking. We engineered a transgenic mouse model to identify peptides enriched within hypocretin-producing neurons that could serve as potential autoimmune targets. Initial analysis indicated that the transcript encoding Tribbles homolog 2 (Trib2), previously identified as an autoantigen in autoimmune uveitis, was enriched in hypocretin neurons in these mice. ELISA analysis showed that sera from narcolepsy patients with cataplexy had higher Trib2-specific antibody titers compared with either normal controls or patients with idiopathic hypersomnia, multiple sclerosis, or other inflammatory neurological disorders. Trib2-specific antibody titers were highest early after narcolepsy onset, sharply decreased within 2-3 years, and then stabilized at levels substantially higher than that of controls for up to 30 years. High Trib2-specific antibody titers correlated with the severity of cataplexy. Serum of a patient showed specific immunoreactivity with over 86% of hypocretin neurons in the mouse hypothalamus. Thus, we have identified reactive autoantibodies in human narcolepsy, providing evidence that narcolepsy is an autoimmune disorder.
Resumo:
G-1 - Appeal Activity in the Public Assistance Programs - April 2007
Resumo:
G-1 - Appeal Activity in the Public Assistance Programs - March 2007
Resumo:
An established tool for the assessment of motor performance in children with developmental coordination disorder (DCD) is the Movement-ABC-2 (M-ABC-2). The Zurich Neuromotor Assessment (ZNA) is also widely used for the evaluation of children's motor performance, but has not been compared with the M-ABC-2. Fifty-one children (39 males) between 5 and 7 years of age with suspected DCD were assessed using the M-ABC-2 and the ZNA. Rank correlations between scores of different test components were calculated. The structure of the tests was explored using canonical-correlation analysis. The correlation between total scores of the two motor tests was reasonable (0.66; p<0.001). However, ZNA scores were generally lower than those of M-ABC-2, due to poor performance in the fine motor adaptive component and increased contralateral associated movements (CAM). The canonical-correlation analysis revealed that ZNA measures components like pure motor skills and CAM that are not represented in the M-ABC-2. Furthermore, there was also no equivalent for the aiming and catching items of the M-ABC-2 in ZNA. The two tests measure different motor characteristics in children with suspected DCD and, thus, can be used complementary for the diagnosis of the disorder.
Resumo:
G-1 - Appeal Activity in the Public Assistance Programs - May 2007
Resumo:
G-1 Appeal Activity in the Public Assistance Programs, June 2007
Resumo:
IL-2 is crucial to T cell homeostasis, especially of CD4(+) T regulatory cells and memory CD8(+) cells, as evidenced by vigorous proliferation of these cells in vivo following injections of superagonist IL-2/anti-IL-2 antibody complexes. The mechanism of IL-2/anti-IL-2 antibody complexes is unknown owing to a lack of understanding of IL-2 homeostasis. We show that IL-2 receptor alpha (CD25) plays a crucial role in IL-2 homeostasis. Thus, prolongation of IL-2 half-life and blocking of CD25 using antibodies or CD25-deficient mice led in combination, but not alone, to vigorous IL-2-mediated T cell proliferation, similar to IL-2/anti-IL-2 antibody complexes. These data suggest an unpredicted role for CD25 in IL-2 homeostasis.
Resumo:
IL-28 (IFN-λ) cytokines exhibit potent antiviral and antitumor function but their full spectrum of activities remains largely unknown. Recently, IL-28 cytokine family members were found to be profoundly down-regulated in allergic asthma. We now reveal a novel role of IL-28 cytokines in inducing type 1 immunity and protection from allergic airway disease. Treatment of wild-type mice with recombinant or adenovirally expressed IL-28A ameliorated allergic airway disease, suppressed Th2 and Th17 responses and induced IFN-γ. Moreover, abrogation of endogenous IL-28 cytokine function in IL-28Rα(-/-) mice exacerbated allergic airway inflammation by augmenting Th2 and Th17 responses, and IgE levels. Central to IL-28A immunoregulatory activity was its capacity to modulate lung CD11c(+) dendritic cell (DC) function to down-regulate OX40L, up-regulate IL-12p70 and promote Th1 differentiation. Consistently, IL-28A-mediated protection was absent in IFN-γ(-/-) mice or after IL-12 neutralization and could be adoptively transferred by IL-28A-treated CD11c(+) cells. These data demonstrate a critical role of IL-28 cytokines in controlling T cell responses in vivo through the modulation of lung CD11c(+) DC function in experimental allergic asthma. →See accompanying Closeup by Michael R Edwards and Sebastian L Johnston http://dx.doi.org/10.1002/emmm.201100143.
Resumo:
PURPOSE: The effects of β(2)-agonists on human skeletal muscle contractile properties, particularly on slow fibers, are unclear. Moreover, it remains to be ascertained whether central motor drive (CMD) during voluntary contractions could counter for eventual contractile alterations induced by β(2)-agonists. This study investigated central and peripheral neuromuscular adjustments induced by β(2)-agonist terbutaline on a predominantly slow human muscle, the soleus. METHODS: Ten recreationally active men ingested either a single dose of 8 mg of terbutaline or placebo in a randomized double-blind order (two experimental sessions). Isometric plantarflexion torque was measured during single and tetanic (10 and 100 Hz) stimulations as well as during submaximal and maximal voluntary contractions (MVC). Twitch peak torque and half-relaxation time were calculated. CMD was estimated via soleus electromyographic recordings obtained during voluntary contractions performed at approximately 50% MVC. RESULTS: MVC and twitch peak torque were not modified by terbutaline. Twitch half-relaxation time was 28% shorter after terbutaline administration compared with placebo (P < 0.001). Tetanic torques at 10 and 100 Hz were significantly lower after terbutaline intake compared with placebo (-40% and -24% respectively, P < 0.001). Despite comparable torque of submaximal voluntary contractions in the two conditions, CMD was 7% higher after terbutaline ingestion compared with placebo (P < 0.01). CONCLUSION: These results provide evidence that terbutaline modulates the contractility of the slow soleus muscle and suggest that the increased CMD during submaximal contractions may be viewed as a compensatory adjustment of the central nervous system to counter the weakening action induced by terbutaline on the contractile function of slow muscle fibers.
Resumo:
BACKGROUND: Plasmid DNA vaccination is a promising approach, but studies in non-human primates and humans failed to achieve protective immunity. To optimise this technology further with focus on pulmonary administration, we developed and evaluated an adjuvant-equipped DNA carrier system based on the biopolymer chitosan. In more detail, the uptake and accompanying immune response of adjuvant Pam3Cys (Toll-like receptor-1/2 agonist) decorated chitosan DNA nanoparticles (NP) were explored by using a three-dimensional (3D) cell culture model of the human epithelial barrier. Pam3Cys functionalised and non-functionalised chitosan DNA NP were sprayed by a microsprayer onto the surface of 3D cell cultures and uptake of NP by epithelial and immune cells (blood monocyte-derived dendritic cells (MDDC) and macrophages (MDM)) was visualised by confocal laser scanning microscopy. In addition, immune activation by TLR pathway was monitored by analysis of interleukin-8 and tumor necrosis factor-α secretions (ELISA). RESULTS: At first, a high uptake rate into antigen-presenting cells (MDDC: 16-17%; MDM: 68-75%) was obtained. Although no significant difference in uptake patterns was observed for Pam3Cys adjuvant functionalised and non-functionalised DNA NP, ELISA of interleukin-8 and tumor necrosis factor-α demonstrated clearly that Pam3Cys functionalisation elicited an overall higher immune response with the ranking of Pam3Cys chitosan DNA NPâeuro0/00>âeuro0/00chitosan DNA NPâeuro0/00=âeuro0/00DNA unloaded chitosan NPâeuro0/00>âeuro0/00control (culture medium). CONCLUSIONS: Chitosan-based DNA delivery enables uptake into abluminal MDDC, which are the most immune competent cells in the human lung for the induction of antigen-specific immunity. In addition, Pam3Cys adjuvant functionalisation of chitosan DNA NP enhances significantly an environment favoring recruitment of immune cells together with a Th1 associated (cellular) immune response due to elevated IL-8 and TNF-α levels. The latter renders this DNA delivery approach attractive for potential DNA vaccination against intracellular pathogens in the lung (e.g., Mycobacterium tuberculosis or influenza virus).