999 resultados para At-fault crash


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photovoltaic (PV) stations have been widely built in the world to utilize solar energy directly. In order to reduce the capital and operational costs, early fault diagnosis is playing an increasingly important role by enabling the long effective operation of PV arrays. This paper analyzes the terminal characteristics of faulty PV strings and arrays, and it develops a PV array fault diagnosis technique. The terminal current-voltage curve of a faulty PV array is divided into two sections, i.e., high-voltage and low-voltage fault diagnosis sections. The corresponding working points of healthy string modules and of healthy and faulty modules in an unhealthy string are then analyzed for each section. By probing into different working points, a faulty PV module can be located. The fault information is of critical importance for the maximum power point tracking and the array dynamical reconfiguration. Furthermore, the string current sensors can be eliminated, and the number of voltage sensors can be reduced by optimizing voltage sensor locations. Typical fault scenarios including monostring, multistring, and a partial shadow for a 1.6-kW 3 $times$ 3 PV array are presented and experimentally tested to confirm the effectiveness of the proposed fault diagnosis method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rate of fatal crashes in Florida has remained significantly higher than the national average for the last several years. The 2003 statistics from the National Highway Traffic Safety Administration (NHTSA), the latest available, show a fatality rate in Florida of 1.71 per 100 million vehicle-miles traveled compared to the national average of 1.48 per 100 million vehicle-miles traveled. The objective of this research is to better understand the driver, environmental, and roadway factors that affect the probability of injury severity in Florida. ^ In this research, the ordered logit model was used to develop six injury severity models; single-vehicle and two-vehicle crashes on urban freeways and urban principal arterials and two-vehicle crashes at urban signalized and unsignalized intersections. The data used in this research included all crashes that occurred on the state highway system for the period from 2001 to 2003 in the Southeast Florida region, which includes the Miami-Dade, Broward and Palm Beach Counties.^ The results of the analysis indicate that the age group and gender of the driver at fault were significant factors of injury severity risk across all models. The greatest risk of severe injury was observed for the age groups 55 to 65 and 66 and older. A positive association between injury severity and the race of the driver at fault was also found. Driver at fault of Hispanic origin was associated with a higher risk of severe injury for both freeway models and for the two-vehicle crash model on arterial roads. A higher risk of more severe injury crash involvement was also found when an African-American was the at fault driver on two-vehicle crashes on freeways. In addition, the arterial class was also found to be positively associated with a higher risk of severe crashes. Six-lane divided arterials exhibited the highest injury severity risk of all arterial classes. The lowest severe injury risk was found for one way roads. Alcohol involvement by the driver at fault was also found to be a significant risk of severe injury for the single-vehicle crash model on freeways. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crash reduction factors (CRFs) are used to estimate the potential number of traffic crashes expected to be prevented from investment in safety improvement projects. The method used to develop CRFs in Florida has been based on the commonly used before-and-after approach. This approach suffers from a widely recognized problem known as regression-to-the-mean (RTM). The Empirical Bayes (EB) method has been introduced as a means to addressing the RTM problem. This method requires the information from both the treatment and reference sites in order to predict the expected number of crashes had the safety improvement projects at the treatment sites not been implemented. The information from the reference sites is estimated from a safety performance function (SPF), which is a mathematical relationship that links crashes to traffic exposure. The objective of this dissertation was to develop the SPFs for different functional classes of the Florida State Highway System. Crash data from years 2001 through 2003 along with traffic and geometric data were used in the SPF model development. SPFs for both rural and urban roadway categories were developed. The modeling data used were based on one-mile segments that contain homogeneous traffic and geometric conditions within each segment. Segments involving intersections were excluded. The scatter plots of data show that the relationships between crashes and traffic exposure are nonlinear, that crashes increase with traffic exposure in an increasing rate. Four regression models, namely, Poisson (PRM), Negative Binomial (NBRM), zero-inflated Poisson (ZIP), and zero-inflated Negative Binomial (ZINB), were fitted to the one-mile segment records for individual roadway categories. The best model was selected for each category based on a combination of the Likelihood Ratio test, the Vuong statistical test, and the Akaike's Information Criterion (AIC). The NBRM model was found to be appropriate for only one category and the ZINB model was found to be more appropriate for six other categories. The overall results show that the Negative Binomial distribution model generally provides a better fit for the data than the Poisson distribution model. In addition, the ZINB model was found to give the best fit when the count data exhibit excess zeros and over-dispersion for most of the roadway categories. While model validation shows that most data points fall within the 95% prediction intervals of the models developed, the Pearson goodness-of-fit measure does not show statistical significance. This is expected as traffic volume is only one of the many factors contributing to the overall crash experience, and that the SPFs are to be applied in conjunction with Accident Modification Factors (AMFs) to further account for the safety impacts of major geometric features before arriving at the final crash prediction. However, with improved traffic and crash data quality, the crash prediction power of SPF models may be further improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the robots gradually become a part of our daily lives, they already play vital roles in many critical operations. Some of these critical tasks include surgeries, battlefield operations, and tasks that take place in hazardous environments or distant locations such as space missions. ^ In most of these tasks, remotely controlled robots are used instead of autonomous robots. This special area of robotics is called teleoperation. Teleoperation systems must be reliable when used in critical tasks; hence, all of the subsystems must be dependable even under a subsystem or communication line failure. ^ These systems are categorized as unilateral or bilateral teleoperation. A special type of bilateral teleoperation is described as force-reflecting teleoperation, which is further investigated as limited- and unlimited-workspace teleoperation. ^ Teleoperation systems configured in this study are tested both in numerical simulations and experiments. A new method, Virtual Rapid Robot Prototyping, is introduced to create system models rapidly and accurately. This method is then extended to configure experimental setups with actual master systems working with system models of the slave robots accompanied with virtual reality screens as well as the actual slaves. Fault-tolerant design and modeling of the master and slave systems are also addressed at different levels to prevent subsystem failure. ^ Teleoperation controllers are designed to compensate for instabilities due to communication time delays. Modifications to the existing controllers are proposed to configure a controller that is reliable in communication line failures. Position/force controllers are also introduced for master and/or slave robots. Later, controller architecture changes are discussed in order to make these controllers dependable even in systems experiencing communication problems. ^ The customary and proposed controllers for teleoperation systems are tested in numerical simulations on single- and multi-DOF teleoperation systems. Experimental studies are then conducted on seven different systems that included limited- and unlimited-workspace teleoperation to verify and improve simulation studies. ^ Experiments of the proposed controllers were successful relative to the customary controllers. Overall, by employing the fault-tolerance features and the proposed controllers, a more reliable teleoperation system is possible to design and configure which allows these systems to be used in a wider range of critical missions. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As users continually request additional functionality, software systems will continue to grow in their complexity, as well as in their susceptibility to failures. Particularly for sensitive systems requiring higher levels of reliability, faulty system modules may increase development and maintenance cost. Hence, identifying them early would support the development of reliable systems through improved scheduling and quality control. Research effort to predict software modules likely to contain faults, as a consequence, has been substantial. Although a wide range of fault prediction models have been proposed, we remain far from having reliable tools that can be widely applied to real industrial systems. For projects with known fault histories, numerous research studies show that statistical models can provide reasonable estimates at predicting faulty modules using software metrics. However, as context-specific metrics differ from project to project, the task of predicting across projects is difficult to achieve. Prediction models obtained from one project experience are ineffective in their ability to predict fault-prone modules when applied to other projects. Hence, taking full benefit of the existing work in software development community has been substantially limited. As a step towards solving this problem, in this dissertation we propose a fault prediction approach that exploits existing prediction models, adapting them to improve their ability to predict faulty system modules across different software projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. ^ A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. ^ The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. ^ The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. ^ To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the robots gradually become a part of our daily lives, they already play vital roles in many critical operations. Some of these critical tasks include surgeries, battlefield operations, and tasks that take place in hazardous environments or distant locations such as space missions. In most of these tasks, remotely controlled robots are used instead of autonomous robots. This special area of robotics is called teleoperation. Teleoperation systems must be reliable when used in critical tasks; hence, all of the subsystems must be dependable even under a subsystem or communication line failure. These systems are categorized as unilateral or bilateral teleoperation. A special type of bilateral teleoperation is described as force-reflecting teleoperation, which is further investigated as limited- and unlimited-workspace teleoperation. Teleoperation systems configured in this study are tested both in numerical simulations and experiments. A new method, Virtual Rapid Robot Prototyping, is introduced to create system models rapidly and accurately. This method is then extended to configure experimental setups with actual master systems working with system models of the slave robots accompanied with virtual reality screens as well as the actual slaves. Fault-tolerant design and modeling of the master and slave systems are also addressed at different levels to prevent subsystem failure. Teleoperation controllers are designed to compensate for instabilities due to communication time delays. Modifications to the existing controllers are proposed to configure a controller that is reliable in communication line failures. Position/force controllers are also introduced for master and/or slave robots. Later, controller architecture changes are discussed in order to make these controllers dependable even in systems experiencing communication problems. The customary and proposed controllers for teleoperation systems are tested in numerical simulations on single- and multi-DOF teleoperation systems. Experimental studies are then conducted on seven different systems that included limited- and unlimited-workspace teleoperation to verify and improve simulation studies. Experiments of the proposed controllers were successful relative to the customary controllers. Overall, by employing the fault-tolerance features and the proposed controllers, a more reliable teleoperation system is possible to design and configure which allows these systems to be used in a wider range of critical missions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research explores Bayesian updating as a tool for estimating parameters probabilistically by dynamic analysis of data sequences. Two distinct Bayesian updating methodologies are assessed. The first approach focuses on Bayesian updating of failure rates for primary events in fault trees. A Poisson Exponentially Moving Average (PEWMA) model is implemnented to carry out Bayesian updating of failure rates for individual primary events in the fault tree. To provide a basis for testing of the PEWMA model, a fault tree is developed based on the Texas City Refinery incident which occurred in 2005. A qualitative fault tree analysis is then carried out to obtain a logical expression for the top event. A dynamic Fault Tree analysis is carried out by evaluating the top event probability at each Bayesian updating step by Monte Carlo sampling from posterior failure rate distributions. It is demonstrated that PEWMA modeling is advantageous over conventional conjugate Poisson-Gamma updating techniques when failure data is collected over long time spans. The second approach focuses on Bayesian updating of parameters in non-linear forward models. Specifically, the technique is applied to the hydrocarbon material balance equation. In order to test the accuracy of the implemented Bayesian updating models, a synthetic data set is developed using the Eclipse reservoir simulator. Both structured grid and MCMC sampling based solution techniques are implemented and are shown to model the synthetic data set with good accuracy. Furthermore, a graphical analysis shows that the implemented MCMC model displays good convergence properties. A case study demonstrates that Likelihood variance affects the rate at which the posterior assimilates information from the measured data sequence. Error in the measured data significantly affects the accuracy of the posterior parameter distributions. Increasing the likelihood variance mitigates random measurement errors, but casuses the overall variance of the posterior to increase. Bayesian updating is shown to be advantageous over deterministic regression techniques as it allows for incorporation of prior belief and full modeling uncertainty over the parameter ranges. As such, the Bayesian approach to estimation of parameters in the material balance equation shows utility for incorporation into reservoir engineering workflows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid development in industry have contributed to more complex systems that are prone to failure. In applications where the presence of faults may lead to premature failure, fault detection and diagnostics tools are often implemented. The goal of this research is to improve the diagnostic ability of existing FDD methods. Kernel Principal Component Analysis has good fault detection capability, however it can only detect the fault and identify few variables that have contribution on occurrence of fault and thus not precise in diagnosing. Hence, KPCA was used to detect abnormal events and the most contributed variables were taken out for more analysis in diagnosis phase. The diagnosis phase was done in both qualitative and quantitative manner. In qualitative mode, a networked-base causality analysis method was developed to show the causal effect between the most contributing variables in occurrence of the fault. In order to have more quantitative diagnosis, a Bayesian network was constructed to analyze the problem in probabilistic perspective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A near-bottom geological and geophysical survey was conducted at the western intersection of the Siqueiros Transform Fault and the East Pacific Rise. Transform-fault shear appears to distort the east flank of the rise crest in an area north of the fracture zone. In ward-facing scarps trend 335° and do not parallel the regional axis of spreading. Small-scale scarps reveal a hummocky bathymetry. The center of spreading is not a central peak but rather a 20-40 m deep, 1 km wide valley superimposed upon an 8 km wide ridge-crest horst. Small-scale topography indicates widespread volcanic flows within the valley. Two 0.75 km wide blocks flank the central valley. Fault scarps are more dominant on the western flank. Their alignment shifts from directions intermediate to parallel to the regional axis of spreading (355°). A median ridge within the fracture zone has a fault-block topography similar to that of the East Pacific Rise to the north. Dominant eastward-facing scarps trending 335° are on the west flank. A central depression, 1 km wide and 30 m deep, separates the dominantly fault-block regime of the west from the smoother topography of the east flank. This ridge originated by uplift due to faulting as well as by volcanism. Detailed mapping was concentrated in a perched basin (Dante's Hole) at the intersection of the rise crest and the fracture zone. Structural features suggest that Dante's Hole is an area subject to extreme shear and tensional drag resulting from transition between non-rigid and rigid crustal behavior. Normal E-W crustal spreading is probably taking place well within the northern confines of the basin. Possible residual spreading of this isolated rise crest coupled with shear drag within the transform fault could explain the structural isolation of Dante's Hole from the remainder of the Siqueiros Transform Fault.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter presents an FPGA implementation of a fault-tolerant Hopfield NeuralNetwork (HNN). The robustness of this circuit against Single Event Upsets (SEUs) and Single Event Transients (SETs) has been evaluated. Results show the fault tolerance of the proposed design, compared to a previous non fault- tolerant implementation and a solution based on triple modular redundancy (TMR) of a standard HNN design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was developed under the ExxonMobil FC2 Alliance (Fundamental Controls on Flow in Carbonates). The authors wish to thank ExxonMobil Production Company and ExxonMobil Upstream Research Company for providing funding. The views in this article by Sherry L. Stafford are her own and not necessarily those of ExxonMobil. This research was supported by the Sedimentary Geology Research Group of the Generalitat de Catalunya (2014SGR251). We would like to thank Andrea Ceriani and Paola Ronchi for their critical and valuable reviews, and Associated Editor Piero Gianolla for the editorial work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major funding was provided by the UK Natural Environment Research Council (NERC) under grant NE/I028017/1 and partially supported by Boğaziçi University Research Fund (BAP) under grant 6922. We would like to thank all the project members from the University of Leeds, Boğaziçi University, Kandilli Observatory, Aberdeen University and Sakarya University. I would also like to thank Prof. Ali Pinar and Dr. Kıvanç Kekovalı for their valuable comments. Some of the figures were generated by GMT software (Wessel and Smith, 1995).