991 resultados para Aligned ZnO Nanorods


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tese relata estudos de síntese, caracterização da estrutura e das propriedades de fotoluminescência e aplicações de nanotubos e nanobastonetes de óxidos de lantanídeos em pontas para microscopia de força atómica, catálise heterogénea e compósitos de base polimérica. Há um interesse crescente em compreender como o confinamento quântico decorrente da redução do tamanho de partícula pode influenciar a eficiência da luminescência, a dinâmica dos estados excitados, a transferência de energia e os efeitos de termalização de nanoluminóforos. Em nanocristais dopados com lantanídeos (Ln3+), e apesar da localização dos estados 4f, ocorrem efeitos de confinamento quântico via interacção com os modos vibracionais da rede. Em particular, a termalização anómala, descrita para uma variedade de nanocristais dopados com Ln3+, tem sido atribuída à ausência de modos vibracionais de menor frequência. Este nanoconfinamento pode ter impacto na dinâmica da luminescência, bem como na transferência de energia mediada por modos vibracionais e processos de upconversion. Nesta tese, relata-se o estudo deste efeito em nanotubos de Gd2O3:Eu3+. A influência de parâmetros como a concentração de európio e as condições de calcinação também foi investigada. Algumas aplicações destes óxidos de lantanídeos também foram exploradas, nomeadamente a modificação de pontas usadas em microscopia de força atómica com nanobastonetes de Gd2O3:Eu3+, lograda através de dielectroforese, técnica que não degrada a emissão de luz (rendimento quântico 0.47). As pontas modificadas são estáveis sob condições de trabalho, podendo ser aplicadas, por exemplo, em microscopia óptica de varrimento de campo próximo (SNOM). A oxidação em fase líquida do etilbenzendo foi investigada usando como catalisador nanotubos de CeO2, em presença dos oxidantes hidroperóxido de t-butilo e H2O2, e do solvente acetonitrilo, e temperaturas entre 55 e 105 ºC. Nanobastonetes de Gd2O3:Eu3+ recobertos com sílica foram preparados pelo método sol-gel. Esta cobertura resultou num aumento, quer do rendimento quântico de emissão, de 0.51 para 0.86 (excitação a 255 nm), quer dos tempos de vida,de 1.43 para 1.80 ms (excitação a 394.4 nm). A superfície dos nanotubos cobertos com sílica foi modificada com o agente de acoplamento metacrilato de 3-(trimetoxissilil)propilo que permitiu a preparação de compósitos através da subsequente polimerização in-situ do estireno por técnicas de miniemulsão e solução. ABSTRACT: This thesis reports on the synthesis, characterisation of the structure and photoluminescence properties, and applications of nanotubes and nanorods of lanthanides oxides in atomic force microscopy tips, heterogeneous catalysis and polymer-base composites. There is a growing interest in understanding how size-dependent quantum confinement affects the photoluminescence efficiency, excited-state dynamics, energy-transfer and thermalisation phenomena in nanophosphors. For lanthanide (Ln3+)-doped nanocrystals, and despite the localisation of the 4f states, confinement effects are induced mostly via electron-phonon interactions. In particular, the anomalous thermalisation reported for a handful of Ln3+-doped nanocrystals has been rationalised by the absence of lowfrequency phonon modes. This nanoconfinement may further impact on the Ln3+ luminescence dynamics, such as phonon-assisted energy transfer or upconversion processes. Here, this effect is investigated in Gd2O3:Eu3+ nanotubes. The influence of parameters such as europium concentration and calcination procedure is also studied. Some applications of these lanthanides oxides have been explored, for instance the modification of atomic force microscopy tips with photoluminescent Gd2O3:Eu3+ nanorods, using dielectrophoresis, a technique which preserves the red emission of the nanorods (quantum yield 0.47). The modified tips are stable under working conditions and may find applications in scanning near-field optical microscopy. The liquid-phase oxidation of ethylbenzene over CeO2 nanotubes has been investigated, using tert-butyl-hydroperoxide and H2O2 as the oxidising agents, and acetonitrile as the solvent, in the range 55-105 ºC. Gd2O3:Eu3+ nanorods have been coated with silica via a sol-gel approach. The silica coating increases both, the Eu3+ absolute emission quantum yields from 0.51 to 0.86 (255 nm excitation), and decay times from 1.43 to 1.80 ms (394.4 nm excitation). The silica coating was modified with 3- (trimethoxysilyl) propyl methacrylate and, subsequently, composites have been prepared by in-situ radical polymerisation of styrene via miniemulsion and solution routes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho foram estudados diferentes filmes finos de ZnO depositados por Rf-Sputtering. Filmes finos de ZnO com diferentes propriedades óticas foram obtidos intencionalmente variando os parâmetros de deposição. De modo a correlacionar as propriedades óticas e estruturais com os parâmetros de deposição, foram utilizadas diferentes técnicas de caracterização avançadas, tais como, fotoluminescência, microscopia de força atómica, difração de raios- X e retrodispersão de Rutherford. Este trabalho centra-se na discussão e análise das bandas de emissão vermelha, verde e azul, comumente observadas em amostras de ZnO e cuja natureza tem sido objeto de grande controvérsia na literatura. A utilização de técnicas de caracterização estrutural revelou-se de extrema importância para correlacionar as propriedades físicas de composição e estrutura com os centros óticos observados nos filmes. Nesta base, foram propostos e discutidos diferentes modelos de recombinação ótica associados à qualidade estrutural dos filmes, considerando modelos de camadas que descrevem a heterogeneidade lateral e em profundidade. Desta análise verificou-se a presença de heterogeneidade estrutural e composicional, que aumenta a complexidade na compreensão da correlação dos parâmetros de deposição com as propriedades óticas dos filmes. Foi discutida a limitação e validade de diferentes modelos tendo em conta a presença da heterogeneidade existente nos filmes estudados. Este trabalho contribui assim para uma melhor compreensão da complexidade de interação dos diferentes defeitos e o seu efeito nas propriedades óticas, nomeadamente o papel dos defeitos de interface, na superfície, nas fronteiras de grão e junto ao substrato.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is about the combination of functional ferroelectric oxides with Multiwall Carbon Nanotubes for microelectronic applications, as for example potential 3 Dimensional (3D) Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Miniaturized electronics are ubiquitous now. The drive to downsize electronics has been spurred by needs of more performance into smaller packages at lower costs. But the trend of electronics miniaturization challenges board assembly materials, processes, and reliability. Semiconductor device and integrated circuit technology, coupled with its associated electronic packaging, forms the backbone of high-performance miniaturized electronic systems. However, as size decreases and functionalization increases in the modern electronics further size reduction is getting difficult; below a size limit the signal reliability and device performance deteriorate. Hence miniaturization of siliconbased electronics has limitations. On this background the Road Map for Semiconductor Industry (ITRS) suggests since 2011 alternative technologies, designated as More than Moore; being one of them based on carbon (carbon nanotubes (CNTs) and graphene) [1]. CNTs with their unique performance and three dimensionality at the nano-scale have been regarded as promising elements for miniaturized electronics [2]. CNTs are tubular in geometry and possess a unique set of properties, including ballistic electron transportation and a huge current caring capacity, which make them of great interest for future microelectronics [2]. Indeed CNTs might have a key role in the miniaturization of Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Moving from a traditional two dimensional (2D) design (as is the case of thin films) to a 3D structure (based on a tridimensional arrangement of unidimensional structures) will result in the high reliability and sensing of the signals due to the large contribution from the bottom electrode. One way to achieve this 3D design is by using CNTs. Ferroelectrics (FE) are spontaneously polarized and can have high dielectric constants and interesting pyroelectric, piezoelectric, and electrooptic properties, being a key application of FE electronic memories. However, combining CNTs with FE functional oxides is challenging. It starts with materials compatibility, since crystallization temperature of FE and oxidation temperature of CNTs may overlap. In this case low temperature processing of FE is fundamental. Within this context in this work a systematic study on the fabrication of CNTs - FE structures using low cost low temperature methods was carried out. The FE under study are comprised of lead zirconate titanate (Pb1-xZrxTiO3, PZT), barium titanate (BaTiO3, BT) and bismuth ferrite (BiFeO3, BFO). The various aspects related to the fabrication, such as effect on thermal stability of MWCNTs, FE phase formation in presence of MWCNTs and interfaces between the CNTs/FE are addressed in this work. The ferroelectric response locally measured by Piezoresponse Force Microscopy (PFM) clearly evidenced that even at low processing temperatures FE on CNTs retain its ferroelectric nature. The work started by verifying the thermal decomposition behavior under different conditions of the multiwall CNTs (MWCNTs) used in this work. It was verified that purified MWCNTs are stable up to 420 ºC in air, as no weight loss occurs under non isothermal conditions, but morphology changes were observed for isothermal conditions at 400 ºC by Raman spectroscopy and Transmission Electron Microscopy (TEM). In oxygen-rich atmosphere MWCNTs started to oxidized at 200 ºC. However in argon-rich one and under a high heating rate MWCNTs remain stable up to 1300 ºC with a minimum sublimation. The activation energy for the decomposition of MWCNTs in air was calculated to lie between 80 and 108 kJ/mol. These results are relevant for the fabrication of MWCNTs – FE structures. Indeed we demonstrate that PZT can be deposited by sol gel at low temperatures on MWCNTs. And particularly interesting we prove that MWCNTs decrease the temperature and time for formation of PZT by ~100 ºC commensurate with a decrease in activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, monophasic PZT was obtained at 575 ºC for MWCNTs - PZT whereas for pure PZT traces of pyrochlore were still present at 650 ºC, where PZT phase formed due to homogeneous nucleation. The piezoelectric nature of MWCNTs - PZT synthesised at 500 ºC for 1 h was proved by PFM. In the continuation of this work we developed a low cost methodology of coating MWCNTs using a hybrid sol-gel / hydrothermal method. In this case the FE used as a proof of concept was BT. BT is a well-known lead free perovskite used in many microelectronic applications. However, synthesis by solid state reaction is typically performed around 1100 to 1300 ºC what jeopardizes the combination with MWCNTs. We also illustrate the ineffectiveness of conventional hydrothermal synthesis in this process due the formation of carbonates, namely BaCO3. The grown MWCNTs - BT structures are ferroelectric and exhibit an electromechanical response (15 pm/V). These results have broad implications since this strategy can also be extended to other compounds of materials with high crystallization temperatures. In addition the coverage of MWCNTs with FE can be optimized, in this case with non covalent functionalization of the tubes, namely with sodium dodecyl sulfate (SDS). MWCNTs were used as templates to grow, in this case single phase multiferroic BFO nanorods. This work shows that the use of nitric solvent results in severe damages of the MWCNTs layers that results in the early oxidation of the tubes during the annealing treatment. It was also observed that the use of nitric solvent results in the partial filling of MWCNTs with BFO due to the low surface tension (<119 mN/m) of the nitric solution. The opening of the caps and filling of the tubes occurs simultaneously during the refluxing step. Furthermore we verified that MWCNTs have a critical role in the fabrication of monophasic BFO; i.e. the oxidation of CNTs during the annealing process causes an oxygen deficient atmosphere that restrains the formation of Bi2O3 and monophasic BFO can be obtained. The morphology of the obtained BFO nano structures indicates that MWCNTs act as template to grow 1D structure of BFO. Magnetic measurements on these BFO nanostructures revealed a week ferromagnetic hysteresis loop with a coercive field of 956 Oe at 5 K. We also exploited the possible use of vertically-aligned multiwall carbon nanotubes (VA-MWCNTs) as bottom electrodes for microelectronics, for example for memory applications. As a proof of concept BiFeO3 (BFO) films were in-situ deposited on the surface of VA-MWCNTs by RF (Radio Frequency) magnetron sputtering. For in situ deposition temperature of 400 ºC and deposition time up to 2 h, BFO films cover the VA-MWCNTs and no damage occurs either in the film or MWCNTs. In spite of the macroscopic lossy polarization behaviour, the ferroelectric nature, domain structure and switching of these conformal BFO films was verified by PFM. A week ferromagnetic ordering loop was proved for BFO films on VA-MWCNTs having a coercive field of 700 Oe. Our systematic work is a significant step forward in the development of 3D memory cells; it clearly demonstrates that CNTs can be combined with FE oxides and can be used, for example, as the next 3D generation of FERAMs, not excluding however other different applications in microelectronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter analyses the unfolding of the Cuban missile crisis in the context of the 17th General Assembly of the UN and shows that, contrary to earlier accounts, U Thant was responding to pressures from the non-aligned and the British in his attempts to handle the crisis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced Materials, Vol. 17, nº 5

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transparent conducting oxides (TCOs) have been largely used in the optoelectronic industry due to their singular combination of low electrical resistivity and high optical transmittance. They are usually deposited by magnetron sputtering systems being applied in several devices, specifically thin film solar cells (TFSCs). Sputtering targets are crucial components of the sputtering process, with many of the sputtered films properties dependent on the targets characteristics. The present thesis focuses on the development of high quality conductive Al-doped ZnO (AZO) ceramic sputtering targets based on nanostructured powders produced by emulsion detonation synthesis method (EDSM), and their application as a TCO. In this sense, the influence of several processing parameters was investigated from the targets raw-materials synthesis to the application of sputtered films in optoelectronic devices. The optimized manufactured AZO targets present a final density above 99 % with controlled grain size, an homogeneous microstructure with a well dispersed ZnAl2O4 spinel phase, and electrical resistivities of ~4 × 10-4 Ωcm independently on the Al-doping level among 0.5 and 2.0 wt. % Al2O3. Sintering conditions proved to have a great influence on the properties of the targets and their performance as a sputtering target. It was demonstrated that both deposition process and final properties of the films are related with the targets characteristics, which in turn depends on the initial powder properties. In parallel, the influence of several deposition parameters in the film´s properties sputtered from these targets was investigated. The sputtered AZO TCOs showed electrical properties at room temperature that are superior to simple oxides and comparable to a reference TCO – indium tin oxide (ITO), namely low electrical resistivity of 5.45 × 10-4 Ωcm, high carrier mobility (29.4 cm2V-1s-1), and high charge carrier concentration (3.97 × 1020 cm-3), and also average transmittance in the visible region > 80 %. These superior properties allowed their successful application in different optoelectronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias de la Ingeniería Mecánica con Especialidad en Materiales) UANL, 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ingeniería Físico Industrial) UANL, 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con orientación en Química Analítica Ambiental) UANL, 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Doctor en Ingeniería Física Industrial) UANL, 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Doctor en Ciencias con orientación en Química Analítica Ambiental) UANL, 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Doctorado en Ciencias con orientación en Química de los Materiales) UANL, 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly transparent, luminescent and biocompatible ZnO quantum dots were prepared in water, methanol, and ethanol using liquid-phase pulsed laser ablation technique without using any surfactant. Transmission electron microscopy analysis confirmed the formation of good crystalline ZnO quantum dots with a uniform size distribution of 7 nm. The emission wavelength could be varied by varying the native defect chemistry of ZnO quantum dots and the laser fluence. Highly luminescent nontoxic ZnO quantum dots have exciting application potential as florescent probes in biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterojunction diodes of n-type ZnO/p-type silicon (100) were fabricated by 12 pulsed laser deposition of ZnO films on p-Si substrates in oxygen ambient at 13 different pressures. These heterojunctions were found to be rectifying with a 14 maximum forward-to-reverse current ratio of about 1,000 in the applied 15 voltage range of -5 V to +5 V. The turn-on voltage of the heterojunctions was 16 found to depend on the ambient oxygen pressure during the growth of the ZnO 17 film. The current density–voltage characteristics and the variation of the 18 series resistance of the n-ZnO/p-Si heterojunctions were found to be in line 19 with the Anderson model and Burstein-Moss (BM) shift.