980 resultados para AIRWAY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Respiratory tract infections and subsequent airway inflammation occur early in the life of infants with cystic fibrosis. However, detailed information about the microbial composition of the respiratory tract in infants with this disorder is scarce. We aimed to undertake longitudinal in-depth characterisation of the upper respiratory tract microbiota in infants with cystic fibrosis during the first year of life. METHODS We did this prospective cohort study at seven cystic fibrosis centres in Switzerland. Between Feb 1, 2011, and May 31, 2014, we enrolled 30 infants with a diagnosis of cystic fibrosis. Microbiota characterisation was done with 16S rRNA gene pyrosequencing and oligotyping of nasal swabs collected every 2 weeks from the infants with cystic fibrosis. We compared these data with data for an age-matched cohort of 47 healthy infants. We additionally investigated the effect of antibiotic treatment on the microbiota of infants with cystic fibrosis. Statistical methods included regression analyses with a multivariable multilevel linear model with random effects to correct for clustering on the individual level. FINDINGS We analysed 461 nasal swabs taken from the infants with cystic fibrosis; the cohort of healthy infants comprised 872 samples. The microbiota of infants with cystic fibrosis differed compositionally from that of healthy infants (p=0·001). This difference was also found in exclusively antibiotic-naive samples (p=0·001). The disordering was mainly, but not solely, due to an overall increase in the mean relative abundance of Staphylococcaceae in infants with cystic fibrosis compared with healthy infants (multivariable linear regression model stratified by age and adjusted for season; second month: coefficient 16·2 [95% CI 0·6-31·9]; p=0·04; third month: 17·9 [3·3-32·5]; p=0·02; fourth month: 21·1 [7·8-34·3]; p=0·002). Oligotyping analysis enabled differentiation between Staphylococcus aureus and coagulase-negative Staphylococci. Whereas the analysis showed a decrease in S aureus at and after antibiotic treatment, coagulase-negative Staphylococci increased. INTERPRETATION Our study describes compositional differences in the microbiota of infants with cystic fibrosis compared with healthy controls, and disordering of the microbiota on antibiotic administration. Besides S aureus, coagulase-negative Staphylococci also contributed to the disordering identified in these infants. These findings are clinically important in view of the crucial role that bacterial pathogens have in the disease progression of cystic fibrosis in early life. Our findings could be used to inform future studies of the effect of antibiotic treatment on the microbiota in infants with cystic fibrosis, and could assist in the prevention of early disease progression in infants with this disorder. FUNDING Swiss National Science Foundation, Fondation Botnar, the Swiss Society for Cystic Fibrosis, and the Swiss Lung Association Bern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When lung development is not interrupted by premature birth and unaffected by genetic or environmental disturbances, all components develop with complex control to form a functional organ with a predictable timeline during fetal development. In this chapter we describe the relationship between morphological development and function in both physiological and pathological conditions in human lung development. Tree-like growth of the lung begins during the first few weeks postconception, with the embryonic stage characterized by branching morphogenesis in both the airways and blood vessels, separately in the left and right lung buds, which appear near day 26 postcoitus (p.c.). Branching continues through the embryonic stage, with proliferation of mesenchymal and epithelial cells and apoptosis near branch points and in the areas of new formation. The pseudoglandular stage (weeks 5–17 p.c.) is characterized by accelerated cellular proliferation and airway and vascular branching, with epithelial differentiation in proximal and distal airways. Further epithelial differentiation, angiogenesis of the parenchymal capillary network, and the first formation of the air–blood barrier characterize the canalicular stage (16–26 weeks p.c.), just before the completion of branching morphogenesis (saccular stage, weeks 24–38 p.c.) and the start of alveolarization (week 36 through adolescence).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pursuant to Section 504 (D)(3) of the Airport and Airway Improvement Act of 1982 (Public law 97-248).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim. To describe the subsequent treatment of airway trauma sustained during laryngoscopy and endotracheal intubation. Methods. A rare injury occurring during laryngoscopy and endotracheal intubation that resulted in perforation of the tongue by an endotracheal tube and the subsequent management of this unusual complication are discussed. A 65-year-old female with intraparenchymal brain hemorrhage with rapidly progressive neurologic deterioration had the airway secured prior to arrival at the referral institution. The endotracheal tube (ETT) was noted to have pierced through the base of the tongue and entered the trachea, and the patient underwent operative laryngoscopy to inspect the injury and the ETT was replaced by tracheostomy. Results. Laryngoscopy demonstrated the ETT to perforate the base of the tongue. The airway was secured with tracheostomy and the ETT was removed. Conclusions. A wide variety of complications resulting from direct and video-assisted laryngoscopy and tracheal intubation have been reported. Direct perforation of the tongue with an ETT and ability to ventilate and oxygenate subsequently is a rare injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infection frequently causes exacerbations of chronic obstructive pulmonary disease (COPD). Mannose-binding lectin (MBL) is a pattern-recognition receptor that assists in clearing microorganisms. Polymorphisms in the MBL2 gene reduce serum MBL levels and are associated with risk of infection. We studied whether the MBL2 codon 54 B allele affected serum MBL levels, admissions for infective exacerbation in COPD and disease susceptibility. Polymorphism frequency was determined by PCR-RFLP in 200 COPD patients and 104 smokers with normal lung function. Serum MBL was measured as mannan-binding activity in a subgroup of 82 stable COPD patients. Frequency of COPD admissions for infective exacerbation was ascertained for a 2-year period. The MBL2 codon 54 B allele reduced serum MBL in COPD patients. In keeping, patients carrying the low MBL-producing B allele had increased risk of admission for infective exacerbation (OR 4.9, P-corrected = 0.011). No association of MBL2 genotype with susceptibility to COPD was detected. In COPD, serum MBL is regulated by polymorphism at codon 54 in its encoding gene. Low MBL-producing genotypes were associated with more frequent admissions to hospital with respiratory infection, suggesting that the MBL2 gene is disease-modifying in COPD. MBL2 genotype should be explored prospectively as a prognostic marker for infection risk in COPD.