981 resultados para ACTIVE RECOVERY
Resumo:
A new method for fabricating electroabsorption modulator integrated with a distributed feedback laser (EML) was proposed. With the method we fabricated a selective area growth double stack active layer EML (SAG-DSAL-EML). Through comparing with other fabrication methods of EMLs, the characters and the merits of the new method presented in this paper were discussed.
Resumo:
A new ultraviolet photodetector of employing p menus type GaN (p(-)-GaN) as the active layer is proposed. It is easy to obtain the p(-)-GaN layer with low carrier concentration. As a result, the depletion region can be increased and the quantum efficiency can be improved. The influence of some structure parameters on the performance of the new device is investigated. Through the simulation calculation, it is found that the quantum efficiency increases with the decrease of the barrier height between the metal electrode and the p(-)-GaN layer, and it is also found that the quantum efficiency can be improved by reducing the thickness of the p(-)-GaN layer. To fabricate the new photodetector with high performance, we should employ thin p(-)-GaN layer as the active layer and reduce the Schottky barrier height.
Resumo:
In this review, the potential of mode-locked lasers based on advanced quantum-dot ( QD) active media to generate short optical pulses is analysed. A comprehensive review of experimental and theoretical work on related aspects is provided, including monolithic-cavity mode-locked QD lasers and external-cavity mode-locked QD lasers, as well as mode-locked solid-state and fibre lasers based on QD semiconductor saturable absorber mirrors. Performance comparisons are made for state-of-the-art experiments. Various methods for improving important characteristics of mode-locked pulses such as pulse duration, repetition rate, pulse power, and timing jitter through optimization of device design parameters or mode-locking methods are addressed. In addition, gain switching and self-pulsation of QD lasers are also briefly reviewed, concluding with the summary and prospects.
Resumo:
Usually GaAs/AlGaAs is utilized as an active layer material in laser diodes operating in the spectral range of 800 850 nm. In this work, in addition to a traditional unstrained GaAs/AlGaAs distributed feedback (DFB) laser diode, a compressively strained InGaAlAs/AlGaAs DFB laser diode is numerically investigated in characteristic. The simulation results show that the compressively strained DFB laser diode has a lower transparency carrier density, higher gain, lower Auger recombination rate, and higher stimulated recombination rate, which lead to better a device performance, than the traditional unstrained GaAs/AlGaAs DFB laser diode.
Resumo:
Temperature dependences of the polarized Raman scattering spectra in the backscattering configuration of the nonpolar a-plane (or [11 (2) over bar0]-oriented) GaN thin film are analyzed in the range from 100 to 570 K. The nonpolar a-plane GaN film is grown on an r-plane [or (1 (1) over bar 02)-oriented] sapphire substrate by metal organic chemical vapor deposition. The spectral features of the Raman shifts, intensities, and linewidths of the active phonons modes A(1)(TO), E-1(TO), and E-2(high) are significantly revealed, and corresponding temperature coefficients are well deduced by the empirical relationships. With increasing the measurement temperature the Raman frequencies are substantially redshifted and the linewidths gradually broaden. The compressive-strain-free temperature for the nonpolar a-plane GaN film is found to be at about 400 K. Our studies will lead to a better understanding of the fundamental physical characteristics of the nonpolar GaN film. (c) 2007 American Institute of Physics.
Resumo:
Using classical constant-pressure molecular dynamics simulations and the force constants model, radial breathing mode (RBM) transition of single-wall carbon nanotubes under hydrostatic pressure is reported. With the pressure increased, the RBM shifts linearly toward higher frequency, and the RBM transition occurs at the same critical pressure as the structural transition. The group theory indicates that the RBMs are all Raman-active; however, due to the effect of the frequency transition and the electronic structure change for tube radial deformation, the Raman intensity of the modes becomes so weak as not to be experimentally detected, which is in agreement with a recent experiment by S. Lebedkin [Phys. Rev. B 73, 094109 (2006)]. Furthermore, the calculated RBM transition pressure is well fitted to the cube of diameter (similar to 1/d(3)).