986 resultados para A full-length play


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Non- protein- coding RNAs ( ncRNAs) are increasingly being recognized as having important regulatory roles. Although much recent attention has focused on tiny 22- to 25- nucleotide microRNAs, several functional ncRNAs are orders of magnitude larger in size. Examples of such macro ncRNAs include Xist and Air, which in mouse are 18 and 108 kilobases ( Kb), respectively. We surveyed the 102,801 FANTOM3 mouse cDNA clones and found that Air and Xist were present not as single, full- length transcripts but as a cluster of multiple, shorter cDNAs, which were unspliced, had little coding potential, and were most likely primed from internal adenine- rich regions within longer parental transcripts. We therefore conducted a genome- wide search for regional clusters of such cDNAs to find novel macro ncRNA candidates. Sixty- six regions were identified, each of which mapped outside known protein- coding loci and which had a mean length of 92 Kb. We detected several known long ncRNAs within these regions, supporting the basic rationale of our approach. In silico analysis showed that many regions had evidence of imprinting and/ or antisense transcription. These regions were significantly associated with microRNAs and transcripts from the central nervous system. We selected eight novel regions for experimental validation by northern blot and RT- PCR and found that the majority represent previously unrecognized noncoding transcripts that are at least 10 Kb in size and predominantly localized in the nucleus. Taken together, the data not only identify multiple new ncRNAs but also suggest the existence of many more macro ncRNAs like Xist and Air.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flavivirus protein NS5 harbors the RNA-dependent RNA polymerase (RdRp) activity. In contrast to the RdRps of hepaci- and pestiviruses, which belong to the same family of Flaviviridae, NS5 carries two activities, a methyltransferase (MTase) and a RdRp. RdRp domains of Dengue virus (DV) and West Nile virus (WNV) NS5 were purified in high yield relative to full-length NS5 and showed full RdRp activity. Steady-state enzymatic parameters were determined on homopolymeric template poly(rC). The presence of the MTase domain does not affect the RdRp activity. Flavivirus RdRp domains might bear more than one GTP binding site displaying positive cooperativity. The kinetics of RNA synthesis by four Flaviviridae RdRps were compared. In comparison to Hepatitis C RdRp, DV and WNV as well as Bovine Viral Diarrhea virus RdRps show less rate limitation by early steps of short-product fort-nation. This suggests that they display a higher conformational flexibility upon the transition from initiation to elongation. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent large-scale analyses of mainly full-length cDNA libraries generated from a variety of mouse tissues indicated that almost half of all representative cloned sequences did flat contain ail apparent protein-coding sequence, and were putatively derived from non-protein-coding RNA (ncRNA) genes. However, many of these clones were singletons and the majority were unspliced, raising the possibility that they may be derived from genomic DNA or unprocessed pre-rnRNA contamination during library construction, or alternatively represent nonspecific transcriptional noise. Here we Show, using reverse transcriptase-dependent PCR, microarray, and Northern blot analyses, that many of these clones were derived from genuine transcripts Of unknown function whose expression appears to be regulated. The ncRNA transcripts have larger exons and fewer introns than protein-coding transcripts. Analysis of the genomic landscape around these sequences indicates that some cDNA clones were produced not from terminal poly(A) tracts but internal priming sites within longer transcripts, only a minority of which is encompassed by known genes. A significant proportion of these transcripts exhibit tissue-specific expression patterns, as well as dynamic changes in their expression in macrophages following lipopolysaccharide Stimulation. Taken together, the data provide strong support for the conclusion that ncRNAs are an important, regulated component of the mammalian transcriptome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using the two largest collections of Mus musculus and Homo sapiens transcription start sites ( TSSs) determined based on CAGE tags, ditags, full- length cDNAs, and other transcript data, we describe the compositional landscape surrounding TSSs with the aim of gaining better insight into the properties of mammalian promoters. We classified TSSs into four types based on compositional properties of regions immediately surrounding them. These properties highlighted distinctive features in the extended core promoters that helped us delineate boundaries of the transcription initiation domain space for both species. The TSS types were analyzed for associations with initiating dinucleotides, CpG islands, TATA boxes, and an extensive collection of statistically significant cis- elements in mouse and human. We found that different TSS types show preferences for different sets of initiating dinucleotides and ciselements. Through Gene Ontology and eVOC categories and tissue expression libraries we linked TSS characteristics to expression. Moreover, we show a link of TSS characteristics to very specific genomic organization in an example of immune- response- related genes ( GO: 0006955). Our results shed light on the global properties of the two transcriptomes not revealed before and therefore provide the framework for better understanding of the transcriptional mechanisms in the two species, as well as a framework for development of new and more efficient promoter- and gene- finding tools.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mammalian transcriptome harbours shadowy entities that resist classification and analysis. In analogy with pseudogenes, we define pseudo-messenger RNA to be RNA molecules that resemble protein- coding mRNA, but cannot encode full-length proteins owing to disruptions of the reading frame. Using a rigorous computational pipeline, which rules out sequencing errors, we identify 10,679 pseudo - messenger RNAs ( approximately half of which are transposonassociated) among the 102,801 FANTOM3 mouse cDNAs: just over 10% of the FANTOM3 transcriptome. These comprise not only transcribed pseudogenes, but also disrupted splice variants of otherwise protein- coding genes. Some may encode truncated proteins, only a minority of which appear subject to nonsense- mediated decay. The presence of an excess of transcripts whose only disruptions are opal stop codons suggests that there are more selenoproteins than currently estimated. We also describe compensatory frameshifts, where a segment of the gene has changed frame but remains translatable. In summary, we survey a large class of non- standard but potentially functional transcripts that are likely to encode genetic information and effect biological processes in novel ways. Many of these transcripts do not correspond cleanly to any identifiable object in the genome, implying fundamental limits to the goal of annotating all functional elements at the genome sequence level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Full-length genome sequences of five virulent and five avirulent strains of Newcastle disease virus isolated between 1998 and 2002 in Victoria and New South Wales, Australia were determined. Comparisons between these strains revealed that coding sequence variability in the haemagglutinin-neuraminidase (HN), matrix (M) and phosphoprotein (P) gene sequences appeared to be more variable than in the fusion (F), nucleocapsid (N) and RNA dependent-RNA replicase (L) genes. Sequence analysis of a number of other isolates made during the recent virulent NDV outbreaks, also identified the presence of a number of variants with altered F gene cleavage sites, which resulted in altered biological properties of those viruses. Quasispecies analysis of a number of field isolates indicated the presence of virulent virus in one particular isolate. Gene sequence analysis of the progenitor virus isolated in 1998 showed very little sequence variation when compared to that of a progenitor-like virus isolated in 2001 demonstrating that in the field. viral genome sequence variation appears to be biologically restricted to that of a consensus sequence. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

SFTI-1 is a small cyclic peptide from sunflower seeds that is one of the most potent trypsin inhibitors of any naturally occurring peptide and is related to the Bowman-Birk family of inhibitors (BBIs). BBIs are involved in the defense mechanisms of plants and also have potential as cancer chemopreventive agents. At only 14 amino acids in size, SFTI-1 is thought to be a highly optimized scaffold of the BBI active site region, and thus it is of interest to examine its important structural and functional features. In this study, a suite of 12 alanine mutants of SFTI-1 has been synthesized, and their structures and activities have been determined. SFTI-1 incorporates a binding loop that is clasped together with a disulfide bond and a secondary peptide loop making up the circular backbone. We show here that the secondary loop stabilizes the binding loop to the consequences of sequence variations. In particular, full-length BBIs have a conserved cis-proline that has been shown previously to be required for well defined structure and potent activity, but we show here that the SFTI-1 scaffold can accommodate mutation of this residue and still have a well defined native-like conformation and nanomolar activity in inhibiting trypsin. Among the Ala mutants, the most significant structural perturbation occurred when Asp(14) was mutated, and it appears that this residue is important in stabilizing the trans peptide bond preceding Pro(13) and is thus a key residue in maintaining the highly constrained structure of SFTI-1. This aspartic acid residue is thought to be involved in the cyclization mechanism associated with excision of SFTI-1 from its 58-amino acid precursor. Overall, this mutational analysis of SFTI-1 clearly defines the optimized nature of the SFTI-1 scaffold and demonstrates the importance of the secondary loop in maintaining the active conformation of the binding loop.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

T he international FANTOM consortium aims to produce a comprehensive picture of the mammalian transcriptome, based upon an extensive cDNA collection and functional annotation of full-length enriched cDNAs. The previous dataset, FANTOM(2), comprised 60,770 full- length enriched cDNAs. Functional annotation revealed that this cDNA dataset contained only about half of the estimated number of mouse protein- coding genes, indicating that a number of cDNAs still remained to be collected and identified. To pursue the complete gene catalog that covers all predicted mouse genes, cloning and sequencing of full- length enriched cDNAs has been continued since FANTOM2. In FANTOM3, 42,031 newly isolated cDNAs were subjected to functional annotation, and the annotation of 4,347 FANTOM2 cDNAs was updated. To accomplish accurate functional annotation, we improved our automated annotation pipeline by introducing new coding sequence prediction programs and developed a Web- based annotation interface for simplifying the annotation procedures to reduce manual annotation errors. Automated coding sequence and function prediction was followed with manual curation and review by expert curators. A total of 102,801 full- length enriched mouse cDNAs were annotated. Out of 102,801 transcripts, 56,722 were functionally annotated as protein coding ( including partial or truncated transcripts), providing to our knowledge the greatest current coverage of the mouse proteome by full- length cDNAs. The total number of distinct non- protein- coding transcripts increased to 34,030. The FANTOM3 annotation system, consisting of automated computational prediction, manual curation, and. nal expert curation, facilitated the comprehensive characterization of the mouse transcriptome, and could be applied to the transcriptomes of other species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Malaria aminopeptidases are important in the generation and regulation of free amino acids that are used in protein anabolism and for maintaining osmotic stability within the infected erythrocyte. The intraerythrocytic development of malaria parasites is blocked when the activity of aminopeptidases is specifically inhibited by reagents such as bestatin. One of the major aminopeptidases of malaria parasites is a leucyl aminopeptidase of the M17 family. We reasoned that, when this enzyme was the target of bestatin inhibition, its overexpression in malaria cells would lead to a reduced sensitivity to the inhibitor. To address this supposition, transgenic Plasmodium falciparum parasites overexpressing the leucyl aminopeptidase were generated by transfection with a plasmid that housed the full-length gene. Transgenic parasites expressed a 65-kDa protein close to the predicted molecule size of 67.831 kDa for the introduced leucyl aminopeptidase, and immunofluorescence studies localized the protein to the cytosol, the location of the native enzyme. The product of the transgene was shown to be functionally active with cytosolic extracts of transgenic parasites exhibiting twice the leucyl aminopeptidase activity compared with wildtype parasites. In vitro inhibitor sensitivity assays demonstrated that the transgenic parasites were more resistant to bestatin (EC50 64 mu M) compared with the parent parasites (EC50 25 mu M). Overexpression of genes in malaria parasites would have general application in the identification and validation of targets for antimalarial drugs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1. The growth hormone (GH) receptor was the first of the class 1 cytokine receptors to be cloned. It shares a number of structural characteristics with other family members and common signalling mechanisms based on common usage of the Janus kinase 2 (JAK2). 2. Growth hormone receptor activation is initiated by GH-induced homodimerization of receptor molecules. This has enabled the creation of specific hormone antagonists that block receptor dimerization. 3. The details of the transcription factors used by the activated receptor are being revealed as a result of promoter analyses and electrophoretic mobility gelshift analysis. 4. Growth hormone receptors are widespread and their discovery in certain tissues has led to the assignment of new physiological roles for GH, Some of these involve local or paracrine roles for GH, as befits its cytokine status. 5. Four examples of such novel roles are discussed, These are: (i) the brain GH axis; (ii) GH and the vitamin B-12 axis; (iii) GH in early pre-implantation development; and (iv) GH in development of the tooth. 6. We propose that the view that GH acts through the intermediacy of insulin-like growth factor-1 is simplistic; rather, GH acts to induce an array of growth factors and their receptors and the composition of this array varies with tissue type and, probably, stage of development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human CD81 (hCD81) protein has been recombinantly produced in the methylotrophic yeast Pichia pastoris. The purified protein, produced at a yield of 1.75 mg/L of culture, was shown to interact with Hepatitis C virus E2 glycoprotein. Immunofluorescent and flow cytometric staining of P. pastoris protoplasts with monoclonal antibodies specific for the second extracellular loop (EC2) of hCD81 confirmed the antigenicity of the recombinant molecule. Full-length hCD81 was solubilized with an array of detergents and subsequently characterized using circular dichroism (CD) and analytical ultracentrifugation. These biophysical techniques confirmed that the protein solution comprises a homogenous species possessing a highly-defined alpha-helical secondary structure. The predicted alpha-helical content of the protein from CD analysis (77.1%) fits remarkably well with what would be expected (75.2%) from knowledge of the protein sequence together with the data from the crystal structure of the second extracellular loop. This study represents the first biophysical characterization of a full-length recombinant tetraspanin, and opens the way for structure-activity analyses of this ubiquitous family of transmembrane proteins.