992 resultados para 180-1116A
Resumo:
Short and variable vase life of cut Acacia holosericea foliage stems limits its commercial potential. Retrospective evaluation of factors affecting the vase life of this cut foliage line was assessed using primary data collected from 30 individual experiments. These data had been collected by four different researchers over 17 months, from late Summer to mid Winter across two consecutive years. Vase life data of cut A. holosericea stems held in deionised water (DIW) was analysed for general vase life variation and to define the most influential factor affecting vase life of the cut stems. Meanwhile, vase life of cut stems exposed to various chemical and physical postharvest treatments was analysed using meta-analysis to evaluate their efficacy in prolonging vase life of the stems. The overall mean vase life (±standard deviation) of cut A. holosericea stems was 6.4 ± 1.2 days (n = 30 trials). Longer vase life of ≥7 days was obtained from cut stems harvested at vegetative and flowering stage, which was between Summer and Autumn. Cut stems harvested at fruiting stage, between Winter and Spring displayed shorter vase life of ≤5.5 days. Mixed model analysis indicated that vase life variation of the cut stems was mostly determined by season (P < 0.001). In averaged, postharvest treatments increased vase life 1.4-fold compared to stems in DIW, with 68.32% had a large positive treatment effect size (d). Among the treatments, nano silver (NS) and copper (Cu2+) were the most beneficial to vase life. Retrospective analysis was found to be beneficial for identifying conditions and targeting practices to maximise the vase life of cut A. holosericea and, potentially for other species.
Resumo:
Previous research identifies various reasons companies invest in information technology (IT), often as a means to generate value. To add to the discussion of IT value generation, this study investigates investments in enterprise software systems that support business processes. Managers of more than 500 Swiss small and medium-sized enterprises (SMEs) responded to a survey regarding the levels of their IT investment in enterprise software systems and the perceived utility of those investments. The authors use logistic and ordinary least squares regression to examine whether IT investments in two business processes affect SMEs' performance and competitive advantage. Using cluster analysis, they also develop a firm typology with four distinct groups that differ in their investments in enterprise software systems. These findings offer key implications for both research and managerial practice.
Resumo:
Three volumes of genealogy and family trees of the Eberstadt family.
Resumo:
The conformational analysis of d-pantothenic acid using classical semiempirical methods has been carried out. The pantothenic acid molecule can exist in the neutral form (I) or in the ionised form (II) with a deprotonated negatively charged carboxyl group. The neutral molecule as well as the anion is highly flexible and has an ensemble of several allowed conformations rather than one or two unique conformations. The distribution of allowed conformations indicate that the β-alanine as well as the pantoic acid part of the molecule prefers partially folded conformations. The conformation of the former is greatly affected by the ionisation state of the carboxyl group whereas that of the latter is not. Possibility of intramolecular hydrogen bonding in different allowed conformations has also been explored. A bifurcated hydrogen bond involving a carboxyl (or carboxylate) oxygen atom and a hydroxyl oxygen atom, as acceptors, and the amide nitrogen atom as the donor occurs frequently in both I and II. Amongst the two crystal structures containing pantothenic acid reported so far, the conformation of the molecule in l-lysine d-pantothenate lies in the allowed region and is stabilised by a bifurcated intramolecular hydrogen bond, whereas that in the calcium bromide salt falls in a disallowed region, presumably due to the requirement of tridentate metal coordination.
Resumo:
The possibility of observing gravitational spin precession due to spin-orbit coupling in a binary pulsar system is considered. An analysis is presented which can aid in delineating the relevant physical effects from pulse-structure data. In this analysis, it is assumed that the pulsar radiation emanates from a cone whose axis is tilted with respect to the axis of rotation. It is found that the time-averaged pulse width and polarization sweep vary periodically with time and that this variation has a periodicity of the order of the spin-precession frequency averaged over a complete revolution. It is concluded that for an orbital period of about 180 years, it suffices to measure polarization data with an accuracy of a few parts in 100 over a period of six months to a year in order to uncover the effects of spin precession. The consistency of the analysis is checked, and the calculations are applied to a recently discovered binary pulsar.
Resumo:
A study of the hyperfine interaction in the ESR of coupled Cu---Cu pairs in single crystals of copper diethyldithiocarbamate as a function of temperature has shown distinct differences in the hyperfine structure in the two fine-structure transitions at 20 K; the spectrum does not have the usual binomial hyperfine pattern for the fine-structure transition of the low field in contrast to that of the high field. The details of the structure of both fine-structure transitions in the 20-K spectrum can be explained by recognizing the fact that the mixing of the nuclear spin states caused by the anisotropic hyperfine interaction affects the electron spin states |+1 and |−1 differently. The anomalous hyperfine structure is found to become symmetric at 77 and 300 K. It is proposed that the reason for this lies in the dynamics of spin-lattice interaction, which limits the lifetime of the spin states in each of the electronic levels |−1 , |0 , and |+1 . The estimate of spin-lattice relaxation time in the temperature range where the changes are observed agrees with those indicated by other studies. The model proposed here for the hyperfine interaction of pairs in the electronic triplet state is of general validity.
Resumo:
TWIK-related K+ channel TREK1, a background leak K+ channel, has been strongly implicated as the target of several general and local anesthetics. Here, using the whole-cell and single-channel patch-clamp technique, we investigated the effect of lidocaine, a local anesthetic, on the human (h) TREK1 channel heterologously expressed in human embryonic kidney 293 cells by an adenoviral-mediated expression system. Lidocaine, at clinical concentrations, produced reversible, concentration-dependent inhibition of hTREK1 current, with IC50 value of 180 mu M, by reducing the single-channel open probability and stabilizing the closed state. We have identified a strategically placed unique aromatic couplet (Tyr352 and Phe355) in the vicinity of the protein kinase A phosphorylation site, Ser348, in the C-terminal domain (CTD) of hTREK1, that is critical for the action of lidocaine. Furthermore, the phosphorylation state of Ser348 was found to have a regulatory role in lidocaine-mediated inhibition of hTREK1. It is interesting that we observed strong intersubunit negative cooperativity (Hill coefficient = 0.49) and half-of-sites saturation binding stoichiometry (half-reaction order) for the binding of lidocaine to hTREK1. Studies with the heterodimer of wild-type (wt)-hTREK1 and Delta 119 C-terminal deletion mutant (hTREK1(wt)-Delta 119) revealed that single CTD of hTREK1 was capable of mediating partial inhibition by lidocaine, but complete inhibition necessitates the cooperative interaction between both the CTDs upon binding of lidocaine. Based on our observations, we propose a model that explains the unique kinetics and provides a plausible paradigm for the inhibitory action of lidocaine on hTREK1.
Resumo:
The conformance between the liner and rings of an internal combustion engine depends mainly on their linear wear (dimensional loss) during running-in. Running-in wear studies, using the factorial design of experiments, on a compression ignition engine show that at certain dead centre locations of piston rings the linear wear of the cylinder liner increases with increase in the initial surface roughness of the liner. Rough surfaces wear rapidly without seizure during running-in to promote quick conformance, so an initial surface finish of the liner of 0.8 μm c.l.a. is recommended. The linear wear of the cast iron liner and rings decreases with increasing load but the mass wear increases with increasing load. This discrepancy is due to phase changes in the cast iron accompanied by dimensional growth at higher thermal loads. During running-in the growth of cast iron should be minimised by running the engine at an initial load for which the exhaust gas temperature is approximately 180 °C.
Resumo:
Abstract is not available.
Resumo:
Carbon-supported Pt-TiO2 (Pt-TiO2/C) catalysts with varying at. wt ratios of Pt to Ti, namely, 1:1, 2:1, and 3:1, are prepared by the sol-gel method. The electrocatalytic activity of the catalysts toward oxygen reduction reaction (ORR), both in the presence and absence of methanol, is evaluated for application in direct methanol fuel cells (DMFCs). The optimum at. wt ratio of Pt to Ti in Pt-TiO2/C is established by fuel cell polarization, linear sweep voltammetry, and cyclic voltammetry studies. Pt-TiO2/C heattreated at 750 degrees C with Pt and Ti in an at. wt ratio of 2:1 shows enhanced methanol tolerance, while maintaining high catalytic activity toward ORR. The DMFC with a Pt-TiO2/C cathode catalyst exhibits an enhanced peak power density of 180 mW/cm(2) in contrast to the 80 mW/cm(2) achieved from the DMFC with carbon-supported Pt catalyst while operating under identical conditions. Complementary data on the influence of TiO2 on the crystallinity of Pt, surface morphology, and particle size, surface oxidation states of individual constituents, and bulk and surface compositions are also obtained by powder X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive analysis by X-ray, and inductively coupled plasm optical emission spectrometry.
Resumo:
Nitrogen fertiliser is a major source of atmospheric N2O and over recent years there is growing evidence for a non-linear, exponential relationship between N fertiliser application rate and N2O emissions. However, there is still high uncertainty around the relationship of N fertiliser rate and N2O emissions for many cropping systems. We conducted year-round measurements of N2O emission and lint yield in four N rate treatments (0, 90, 180 and 270 kg N ha-1) in a cotton-fallow rotation on a black vertosol in Australia. We observed a nonlinear exponential response of N2O emissions to increasing N fertiliser rates with cumulative annual N2O emissions of 0.55 kg N ha-1, 0.67kg N ha-1, 1.07 kg N ha-1 and 1.89 kg N ha-1 for the four respective N fertiliser rates while no N response to yield occurred above 180N. The N fertiliser induced annual N2O EF factors increased from 0.13% to 0.29% and 0.50% for the 90N, 180N and 270N treatments respectively, significantly lower than the IPCC Tier 1 default value (1.0 %). This non-linear response suggests that an exponential N2O emissions model may be more appropriate for use in estimating emission of N2O from soils cultivated to cotton in Australia. It also demonstrates that improved agricultural N management practices can be adopted in cotton to substantially reduce N2O emissions without affecting yield potential.
Resumo:
Silk gland cells ofBombyx mori undergo chromosomal endoduplication throughout larval development. The DNA content of both posterior and middle silk gland nuclei increased by 300000 times the haploid genomic content, amounting to 18 rounds of replication. The DNA doubling time is approximately 48 h and 24 h during the fourth and fifth instars of larval development. However, DNA content does not change during the interim moult. Concomitant with DNA content, DNA polymerase activity also increases as development progressed. Enzyme activity is predominantly due to DNA polymerase with no detectable level of polymerase . DNA polymerase from silk gland extracts was purified to homogeneity (using a series of columns involving ionexchange, gel-filtration and affintiy chromatography), resulting in a 4000-fold increase in specific activity. The enzyme is a heterogeneous multimer of high molecular mass, and the catalytic (polymerase) activity is resident in the 180-kDa subunit. The enzyme shows a PI of 6.2 and theKm values for the dNTP vary over 5-16 . The polymerase is tightly associated with primase activity and initiates primer synthesis in the presence of ribonucleoside triphosphates on a single-stranded DNA template. The primase activity is resident in the 45-kDa subunit. The enzyme is devoid of any detectable exonuclease activity. The abundance of DNA polymerase α in silk glands and its strong association with the nuclear matrix suggest a role in the DNA endoduplication process.
Resumo:
The glomerular epithelial cells and their intercellular junctions, termed slit diaphragms, are essential components of the filtration barrier in the kidney glomerulus. Nephrin is a transmembrane adhesion protein of the slit diaphragm and a signalling molecule regulating podocyte physiology. In congenital nephrotic syndrome of the Finnish type, mutation of nephrin leads to disruption of the permeability barrier and leakage of plasma proteins into the urine. This doctoral thesis hypothesises that novel nephrin-associated molecules are involved in the function of the filtration barrier in health and disease. Bioinformatics tools were utilized to identify novel nephrin-like molecules in genomic databases, and their distribution in the kidney and other tissues was investigated. Filtrin, a novel nephrin homologue, is expressed in the glomerular podocytes and, according to immunoelectron microscopy, localizes at the slit diaphragm. Interestingly, the nephrin and filtrin genes, NPHS1 and KIRREL2, locate in a head-to-head orientation on chromosome 19q13.12. Another nephrin-like molecule, Nphs1as was cloned in mouse, however, no expression was detected in the kidney but instead in the brain and lymphoid tissue. Notably, Nphs1as is transcribed from the nephrin locus in an antisense orientation. The glomerular mRNA and protein levels of filtrin were measured in kidney biopsies of patients with proteinuric diseases, and marked reduction of filtrin mRNA levels was detected in the proteinuric samples as compared to controls. In addition, altered distribution of filtrin in injured glomeruli was observed, with the most prominent decrease of the expression in focal segmental glomerulosclerosis. The role of the slit diaphragm-associated genes for the development of diabetic nephropathy was investigated by analysing single nucleotide polymorphisms. The genes encoding filtrin, densin-180, NEPH1, podocin, and alpha-actinin-4 were analysed, and polymorphisms at the alpha-actinin-4 gene were associated with diabetic nephropathy in a gender-dependent manner. Filtrin is a novel podocyte-expressed protein with localization at the slit diaphragm, and the downregulation of filtrin seems to be characteristic for human proteinuric diseases. In the context of the crucial role of nephrin for the glomerular filter, filtrin appears to be a potential candidate molecule for proteinuria. Although not expressed in the kidney, the nephrin antisense Nphs1as may regulate the expression of nephrin in extrarenal tissues. The genetic association analysis suggested that the alpha-actinin-4 gene, encoding an actin-filament cross-linking protein of the podocytes, may contribute to susceptibility for diabetic nephropathy.