989 resultados para weekly self-scheduling
Resumo:
In this article, we consider the single-machine scheduling problem with past-sequence-dependent (p-s-d) setup times and a learning effect. The setup times are proportional to the length of jobs that are already scheduled; i.e. p-s-d setup times. The learning effect reduces the actual processing time of a job because the workers are involved in doing the same job or activity repeatedly. Hence, the processing time of a job depends on its position in the sequence. In this study, we consider the total absolute difference in completion times (TADC) as the objective function. This problem is denoted as 1/LE, (Spsd)/TADC in Kuo and Yang (2007) ('Single Machine Scheduling with Past-sequence-dependent Setup Times and Learning Effects', Information Processing Letters, 102, 22-26). There are two parameters a and b denoting constant learning index and normalising index, respectively. A parametric analysis of b on the 1/LE, (Spsd)/TADC problem for a given value of a is applied in this study. In addition, a computational algorithm is also developed to obtain the number of optimal sequences and the range of b in which each of the sequences is optimal, for a given value of a. We derive two bounds b* for the normalising constant b and a* for the learning index a. We also show that, when a < a* or b > b*, the optimal sequence is obtained by arranging the longest job in the first position and the rest of the jobs in short processing time order.
Resumo:
We consider a problem of providing mean delay and average throughput guarantees in random access fading wireless channels using CSMA/CA algorithm. This problem becomes much more challenging when the scheduling is distributed as is the case in a typical local area wireless network. We model the CSMA network using a novel queueing network based approach. The optimal throughput per device and throughput optimal policy in an M device network is obtained. We provide a simple contention control algorithm that adapts the attempt probability based on the network load and obtain bounds for the packet transmission delay. The information we make use of is the number of devices in the network and the queue length (delayed) at each device. The proposed algorithms stay within the requirements of the IEEE 802.11 standard.
Resumo:
We consider the problem of scheduling semiconductor burn-in operations, where burn-in ovens are modelled as batch processing machines. Most of the studies assume that ready times and due dates of jobs are agreeable (i.e., ri < rj implies di ≤ dj). In many real world applications, the agreeable property assumption does not hold. Therefore, in this paper, scheduling of a single burn-in oven with non-agreeable release times and due dates along with non-identical job sizes as well as non-identical processing of time problem is formulated as a Non-Linear (0-1) Integer Programming optimisation problem. The objective measure of the problem is minimising the maximum completion time (makespan) of all jobs. Due to computational intractability, we have proposed four variants of a two-phase greedy heuristic algorithm. Computational experiments indicate that two out of four proposed algorithms have excellent average performance and also capable of solving any large-scale real life problems with a relatively low computational effort on a Pentium IV computer.
Resumo:
We propose robust and scalable processes for the fabrication of floating gate devices using ordered arrays of 7 nm size gold nanoparticles as charge storage nodes. The proposed strategy can be readily adapted for fabricating next generation (sub-20 nm node) non-volatile memory devices.
Resumo:
A dinuclear organometallic acceptor 4,4'-bis[trans-Pt(PEt(3))(2)(O(3)SCF(3))(ethynyl)]biphenyl (1) containing Pt-ethynyl functionality is synthesized. Multinuclear NMR ((1)H, (31)P, and (13)C), infrared (IR), and electrospray ionization mass spectrometry (ESI-MS) including single-crystal X-ray diffraction analysis established the formation of 1. Equimolar treatment of acceptor 1 separately with three different ``clip'' type ditopic donors (L(a)-L(c)) yielded [2 + 2] self-assembled three metallamacrocycles 2a-2c, respectively. These macrocycles were characterized by various spectroscopic techniques, and their sizes/shapes were obtained through geometry optimization using molecular mechanics universal force field (MMUFF) simulations. Attachment of unsaturated ethynyl functionality to biphenyl building unit helped to make the macrocycles (2a-2c) pi-electron rich and thereby fluorescent in nature. Furthermore, 2c in solution has been examined to be suitable for sensing electron-deficient nitroaromatic like picric acid, which is often considered as a secondary chemical explosive. The fluorescence study of 2c showed a marked quenching of initial emission intensity upon titrating with picric acid (PA), and it exhibited the largest fluorescence quenching response with high selectivity among various other electron deficient aromatic compounds tested.
Resumo:
The Effective Exponential SNR Mapping (EESM) is an indispensable tool for analyzing and simulating next generation orthogonal frequency division multiplexing (OFDM) based wireless systems. It converts the different gains of multiple subchannels, over which a codeword is transmitted, into a single effective flat-fading gain with the same codeword error rate. It facilitates link adaptation by helping each user to compute an accurate channel quality indicator (CQI), which is fed back to the base station to enable downlink rate adaptation and scheduling. However, the highly non-linear nature of EESM makes a performance analysis of adaptation and scheduling difficult; even the probability distribution of EESM is not known in closed-form. This paper shows that EESM can be accurately modeled as a lognormal random variable when the subchannel gains are Rayleigh distributed. The model is also valid when the subchannel gains are correlated in frequency or space. With some simplifying assumptions, the paper then develops a novel analysis of the performance of LTE's two CQI feedback schemes that use EESM to generate CQI. The comprehensive model and analysis quantify the joint effect of several critical components such as scheduler, multiple antenna mode, CQI feedback scheme, and EESM-based feedback averaging on the overall system throughput.
Resumo:
Frequency-domain scheduling and rate adaptation enable next-generation orthogonal frequency-division multiple access (OFDMA) cellular systems such as Long-Term Evolution (LTE) to achieve significantly higher spectral efficiencies. LTE uses a pragmatic combination of several techniques to reduce the channel-state feedback that is required by a frequency-domain scheduler. In the subband-level feedback and user-selected subband feedback schemes specified in LTE, the user reduces feedback by reporting only the channel quality that is averaged over groups of resource blocks called subbands. This approach leads to an occasional incorrect determination of rate by the scheduler for some resource blocks. In this paper, we develop closed-form expressions for the throughput achieved by the feedback schemes of LTE. The analysis quantifies the joint effects of three critical components on the overall system throughput-scheduler, multiple-antenna mode, and the feedback scheme-and brings out its dependence on system parameters such as the number of resource blocks per subband and the rate adaptation thresholds. The effect of the coarse subband-level frequency granularity of feedback is captured. The analysis provides an independent theoretical reference and a quick system parameter optimization tool to an LTE system designer and theoretically helps in understanding the behavior of OFDMA feedback reduction techniques when operated under practical system constraints.
Resumo:
Synthesis of a series of two-dimensional metallamacrocycles via coordination-driven self-assembly of a shape-selective Pt(2)(II)-molecular building unit incorporating carbazole-ethynyl functionality is described. An equimolar (1 : 1) combination of a Pt(2)(II)-organometallic 90 degrees acceptor, 1, with rigid linear ditopic donors (L(a) and L(b)) afforded [4 + 4] self-assembled octanuclear molecular squares, 2 and 3, in quantitative yields, respectively [L(a) = 4,4'-bipyridine; L(b) = trans-1,2-bis(4-pyridyl)ethylene]. Conversely, a similar treatment of 1 with an amide-based unsymmetrical flexible ditopic donor, L(c), resulted in the formation of a [2 + 2] self-sorted molecular rhomboid (4a) as a single product [L(c) = N-(4-pyridyl)isonicotinamide]. Despite the possibility of several linkage isomeric macrocycles (rhomboid, triangle and square) due to the different connectivity of L(c), the formation of a single and symmetrical molecular rhomboid (4a) as the only product is an interesting observation. All the self-assembled macrocycles (2, 3 and 4a) were fully characterized by multinuclear NMR ((1)H and (31)P) and ESI-MS analysis. Further structural insights about the size and shape of the macrocycles were obtained through energy minimization using density functional theory (DFT) calculations. Decoration of the starting carbazole building unit with Pt-ethynyl functionality enriches the assemblies to be more p-electron rich and luminescent in nature. Macrocycles 2 and 3 could sense the presence of electron deficient nitroaromatics in solution by quenching of the initial intensity upon gradual addition of picric acid (PA). They exhibited the largest quenching response with high selectivity for nitroaromatics compared to several other electron deficient aromatics tested.