975 resultados para virtual engineering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yeast multi-copy vectors carrying the formaldehyde-resistance marker gene SFA have proved to be a valuable tool for research on industrially used strains of Saccharomyces cerevisiae. The genetics of these strains is often poorly understood, and for various reasons it is not possible to simply subject these strains to protocols of genetic engineering that have been established for laboratory strains of S. cerevisiae. We tested our vectors and protocols using 10 randomly picked baker's and wine yeasts all of which could be transformed by a simple protocol with vectors conferring hyperresistance to formaldehyde. The application of formaldehyde as a selecting agent also offers the advantage of its biodegradation to CO2 during fermentation, i.e., the selecting agent will be consumed and therefore its removal during down-stream processing is not necessary. Thus, this vector provides an expression system which is simple to apply and inexpensive to use

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active Magnetic Bearings offer many advantages that have brought new applications to the industry. However, similarly to all new technology, active magnetic bearings also have downsides and one of those is the low standardization level. This thesis is studying mainly the ISO 14839 standard and more specifically the system verification methods. These verifying methods are conducted using a practical test with an existing active magnetic bearing system. The system is simulated with Matlab using rotor-bearing dynamics toolbox, but this study does not include the exact simulation code or a direct algebra calculation. However, this study provides the proof that standardized simulation methods can be applied in practical problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the 70's, pancreatic islet transplantation arose as an attractive alternative to restore normoglycemia; however, the scarcity of donors and difficulties with allotransplants, even under immunosuppressive treatment, greatly hampered the use of this alternative. Several materials and devices have been developed to circumvent the problem of islet rejection by the recipient, but, so far, none has proved to be totally effective. A major barrier to transpose is the highly organized islet architecture and its physical and chemical setting in the pancreatic parenchyma. In order to tackle this problem, we assembled a multidisciplinary team that has been working towards setting up the Human Pancreatic Islets Unit at the Chemistry Institute of the University of São Paulo, to collect and process pancreas from human donors, upon consent, in order to produce purified, viable and functional islets to be used in transplants. Collaboration with the private enterprise has allowed access to the latest developed biomaterials for islet encapsulation and immunoisolation. Reasoning that the natural islet microenvironment should be mimicked for optimum viability and function, we set out to isolate extracellular matrix components from human pancreas, not only for analytical purposes, but also to be used as supplementary components of encapsulating materials. A protocol was designed to routinely culture different pancreatic tissues (islets, parenchyma and ducts) in the presence of several pancreatic extracellular matrix components and peptide growth factors to enrich the beta cell population in vitro before transplantation into patients. In addition to representing a therapeutic promise, this initiative is an example of productive partnership between the medical and scientific sectors of the university and private enterprises.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a novel design paradigm, called Virtual Runtime Application Partitions (VRAP), to judiciously utilize the on-chip resources. As the dark silicon era approaches, where the power considerations will allow only a fraction chip to be powered on, judicious resource management will become a key consideration in future designs. Most of the works on resource management treat only the physical components (i.e. computation, communication, and memory blocks) as resources and manipulate the component to application mapping to optimize various parameters (e.g. energy efficiency). To further enhance the optimization potential, in addition to the physical resources we propose to manipulate abstract resources (i.e. voltage/frequency operating point, the fault-tolerance strength, the degree of parallelism, and the configuration architecture). The proposed framework (i.e. VRAP) encapsulates methods, algorithms, and hardware blocks to provide each application with the abstract resources tailored to its needs. To test the efficacy of this concept, we have developed three distinct self adaptive environments: (i) Private Operating Environment (POE), (ii) Private Reliability Environment (PRE), and (iii) Private Configuration Environment (PCE) that collectively ensure that each application meets its deadlines using minimal platform resources. In this work several novel architectural enhancements, algorithms and policies are presented to realize the virtual runtime application partitions efficiently. Considering the future design trends, we have chosen Coarse Grained Reconfigurable Architectures (CGRAs) and Network on Chips (NoCs) to test the feasibility of our approach. Specifically, we have chosen Dynamically Reconfigurable Resource Array (DRRA) and McNoC as the representative CGRA and NoC platforms. The proposed techniques are compared and evaluated using a variety of quantitative experiments. Synthesis and simulation results demonstrate VRAP significantly enhances the energy and power efficiency compared to state of the art.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virtual environments and real-time simulators (VERS) are becoming more and more important tools in research and development (R&D) process of non-road mobile machinery (NRMM). The virtual prototyping techniques enable faster and more cost-efficient development of machines compared to use of real life prototypes. High energy efficiency has become an important topic in the world of NRMM because of environmental and economic demands. The objective of this thesis is to develop VERS based methods for research and development of NRMM. A process using VERS for assessing effects of human operators on the life-cycle efficiency of NRMM was developed. Human in the loop simulations are ran using an underground mining loader to study the developed process. The simulations were ran in the virtual environment of the Laboratory of Intelligent Machines of Lappeenranta University of Technology. A physically adequate real-time simulation model of NRMM was shown to be reliable and cost effective in testing of hardware components by the means of hardware-in-the-loop (HIL) simulations. A control interface connecting integrated electro-hydraulic energy converter (IEHEC) with virtual simulation model of log crane was developed. IEHEC consists of a hydraulic pump-motor and an integrated electrical permanent magnet synchronous motorgenerator. The results show that state of the art real-time NRMM simulators are capable to solve factors related to energy consumption and productivity of the NRMM. A significant variation between the test drivers is found. The results show that VERS can be used for assessing human effects on the life-cycle efficiency of NRMM. HIL simulation responses compared to that achieved with conventional simulation method demonstrate the advances and drawbacks of various possible interfaces between the simulator and hardware part of the system under study. Novel ideas for arranging the interface are successfully tested and compared with the more traditional one. The proposed process for assessing the effects of operators on the life-cycle efficiency will be applied for wider group of operators in the future. Driving styles of the operators can be analysed statistically from sufficient large result data. The statistical analysis can find the most life-cycle efficient driving style for the specific environment and machinery. The proposed control interface for HIL simulation need to be further studied. The robustness and the adaptation of the interface in different situations must be verified. The future work will also include studying the suitability of the IEHEC for different working machines using the proposed HIL simulation method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Greenhouse gases emitted from energy production and transportation are dramatically changing the climate of Planet Earth. As a consequence, global warming is affecting the living conditions of numerous plant and animal species, including ours. Thus the development of sustainable and renewable liquid fuels is an essential global challenge in order to combat the climate change. In the past decades many technologies have been developed as alternatives to currently used petroleum fuels, such as bioethanol and biodiesel. However, even with gradually increasing production, the market penetration of these first generation biofuels is still relatively small compared to fossil fuels. Researchers have long ago realized that there is a need for advanced biofuels with improved physical and chemical properties compared to bioethanol and with biomass raw materials not competing with food production. Several target molecules have been identified as potential fuel candidates, such as alkanes, fatty acids, long carbon‐chain alcohols and isoprenoids. The current study focuses on the biosynthesis of butanol and propane as possible biofuels. The scope of this research was to investigate novel heterologous metabolic pathways and to identify bottlenecks for alcohol and alkane generation using Escherichia coli as a model host microorganism. The first theme of the work studied the pathways generating butyraldehyde, the common denominator for butanol and propane biosynthesis. Two ways of generating butyraldehyde were described, one via the bacterial fatty acid elongation machinery and the other via partial overexpression of the acetone‐butanol‐ethanol fermentation pathway found in Clostridium acetobutylicum. The second theme of the experimental work studied the reduction of butyraldehyde to butanol catalysed by various bacterial aldehyde‐reductase enzymes, whereas the final part of the work investigated the in vivo kinetics of the cyanobacterial aldehyde deformylating oxygenase (ADO) for the generation of hydrocarbons. The results showed that the novel butanol pathway, based on fatty acid biosynthesis consisting of an acyl‐ACP thioesterase and a carboxylic acid reductase, is tolerant to oxygen, thus being an efficient alternative to the previous Clostridial pathways. It was also shown that butanol can be produced from acetyl‐CoA using acetoacetyl CoA synthase (NphT7) or acetyl‐CoA acetyltransferase (AtoB) enzymes. The study also demonstrated, for the first time, that bacterial biosynthesis of propane is possible. The efficiency of the system is clearly limited by the poor kinetic properties of the ADO enzyme, and for proper function in vivo, the catalytic machinery requires a coupled electron relay system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study discusses the significance of having service as a business logic, and more specifically, how value co-creation can be seen as an enhancing phenomenon to business-to-business relationships in traditional business sector. The purpose of this study is to investigate how value cocreation can enhance a business-to-business relationship in the heating, ventilation and airconditioning (HVAC) industry of building services engineering, through three sub-objectives: to identify what is value in the industry, how value is co-created in the industry, and what is value in a business-to-business relationship in the industry. The theoretical part this study consists of academic knowledge and literature related to the concepts of value, value co-creation and business-to-business relationships. In order to research value co-creation and business-to-business relationships in HVAC industry of building services engineering both, metaphorical and conceptual thinking of service dominant (S-D) logic and more managerial approach of service logic (SL), contributed to the theoretical part of the study. The empirical research conducted for this study is based on seven semi-structured interviews, which constituted the holistic, qualitative single case study method chosen for the research. The data was collected in September 2014 from CEOs, managers and owners representing six building services engineering firms. The interviews were analysed with the help of transcriptions, role-ordered matrices and thematic networks. The findings of this study indicate that value in HVAC industry consists of client expertise and supplier expertise. The result of applying client expertise and supplier expertise to the business-to- business relationship is characterized as value-in-reputation, when continuity, interaction, learning and rapport of the business relationship are ensured. As a result, value co-creation in the industry consists of mutual and separate elements, which the client and the supplier apply in the process, in addition to proactive interaction. The findings of this study, together with the final framework, enhance the understanding of the connection existing between value co-creation and business-to-business relationship. The findings suggest that value in the HVAC industry is characterized by both value-in-use and value-inreputation. Value-in-reputation enhances the formation of value-in-use, and consequently, value cocreation enhances the business-to-business relationship. This study thus contributes to the existing knowledge on the concepts of value and value co-creation in business-to-business relationships.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development and selection of an ideal scaffold is of importance for tissue engineering. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) is a biocompatible bioresorbable copolymer that belongs to the polyhydroxyalkanoate family. Because of its good biocompatibility, PHBHHx has been widely used as a cell scaffold for tissue engineering. This review focuses on the utilization of PHBHHx-based scaffolds in tissue engineering. Advances in the preparation, modification, and application of PHBHHx scaffolds are discussed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study is to increase understanding of the nature and role of trust in temporary virtual problem-solving teams engaged in real-life co-creation activities, while much of previous research has been conducted in student settings. The different forms and bases of trust, possible trust barriers and trust building actions, and perceived role of trust in knowledge sharing and collaboration are analyzed. The study is conducted as a qualitative case study in case company. Data includes interviews from 24 people: 13 from 3 different project teams that were going on during the study, 8 from already finalized project teams, and 3 founders of case company. Additional data consists of communication archives from three current teams. The results indicate that there were both knowledge-based and swift trust present, former being based on work-related personal experiences about leaders or other team members, and latter especially on references, disposition to trust and institution-based factors such as norms and rules, as well as leader and expert action. The findings suggest that possible barriers of trust might be related to lack of adaptation to virtual work, unclear roles and safety issues, and nature of virtual communication. Actions that could be applied to enhance trust are for example active behavior in discussions, work-related introductions communicating competence, managerial actions and face-to-face interaction. Finally, results also suggest that trust has a focal role as an enabler of action and knowledge sharing, and coordinator of effective collaboration and performance in temporary virtual problem-solving teams.