977 resultados para quantum gates
Resumo:
This thesis reports on the creation and analysis of many-body states of interacting fermionic atoms in optical lattices. The realized system can be described by the Fermi-Hubbard hamiltonian, which is an important model for correlated electrons in modern condensed matter physics. In this way, ultra-cold atoms can be utilized as a quantum simulator to study solid state phenomena. The use of a Feshbach resonance in combination with a blue-detuned optical lattice and a red-detuned dipole trap enables an independent control over all relevant parameters in the many-body hamiltonian. By measuring the in-situ density distribution and doublon fraction it has been possible to identify both metallic and insulating phases in the repulsive Hubbard model, including the experimental observation of the fermionic Mott insulator. In the attractive case, the appearance of strong correlations has been detected via an anomalous expansion of the cloud that is caused by the formation of non-condensed pairs. By monitoring the in-situ density distribution of initially localized atoms during the free expansion in a homogeneous optical lattice, a strong influence of interactions on the out-of-equilibrium dynamics within the Hubbard model has been found. The reported experiments pave the way for future studies on magnetic order and fermionic superfluidity in a clean and well-controlled experimental system.
Resumo:
Die Untersuchung von dissipativen Quantensystemen erm¨oglicht es, Quantenph¨anomene auch auf makroskopischen L¨angenskalen zu beobachten. Das in dieser Dissertation gew¨ahlte mikroskopische Modell erlaubt es, den bisher nur ph¨anomenologisch zug¨anglichen Effekt der Quantendissipation mathematisch und physikalisch herzuleiten und zu untersuchen. Bei dem betrachteten mikroskopischen Modell handelt es sich um eine 1-dimensionale Kette von harmonischen Freiheitsgraden, die sowohl untereinander als auch an r anharmonische Freiheitsgrade gekoppelt sind. Die F¨alle einer, respektive zwei anharmonischer Bindungen werden in dieser Arbeit explizit betrachtet. Hierf¨ur wird eine analytische Trennung der harmonischen von den anharmonischen Freiheitsgraden auf zwei verschiedenen Wegen durchgef¨uhrt. Das anharmonische Potential wird als symmetrisches Doppelmuldenpotential gew¨ahlt, welches mit Hilfe der Wick Rotation die Berechnung der ¨Uberg¨ange zwischen beiden Minima erlaubt. Das Eliminieren der harmonischen Freiheitsgrade erfolgt mit Hilfe des wohlbekannten Feynman-Vernon Pfadintegral-Formalismus [21]. In dieser Arbeit wird zuerst die Positionsabh¨angigkeit einer anharmonischen Bindung im Tunnelverhalten untersucht. F¨ur den Fall einer fernab von den R¨andern lokalisierten anharmonischen Bindung wird ein Ohmsches dissipatives Tunneln gefunden, was bei der Temperatur T = 0 zu einem Phasen¨ubergang in Abh¨angigkeit einer kritischen Kopplungskonstanten Ccrit f¨uhrt. Dieser Phasen¨ubergang wurde bereits in rein ph¨anomenologisches Modellen mit Ohmscher Dissipation durch das Abbilden des Systems auf das Ising-Modell [26] erkl¨art. Wenn die anharmonische Bindung jedoch an einem der R¨ander der makroskopisch grossen Kette liegt, tritt nach einer vom Abstand der beiden anharmonischen Bindungen abh¨angigen Zeit tD ein ¨Ubergang von Ohmscher zu super- Ohmscher Dissipation auf, welche im Kern KM(τ ) klar sichtbar ist. F¨ur zwei anharmonische Bindungen spielt deren indirekteWechselwirkung eine entscheidende Rolle. Es wird gezeigt, dass der Abstand D beider Bindungen und die Wahl des Anfangs- und Endzustandes die Dissipation bestimmt. Unter der Annahme, dass beide anharmonischen Bindung gleichzeitig tunneln, wird eine Tunnelwahrscheinlichkeit p(t) analog zu [14], jedoch f¨ur zwei anharmonische Bindungen, berechnet. Als Resultat erhalten wir entweder Ohmsche Dissipation f¨ur den Fall, dass beide anharmonischen Bindungen ihre Gesamtl¨ange ¨andern, oder super-Ohmsche Dissipation, wenn beide anharmonischen Bindungen durch das Tunneln ihre Gesamtl¨ange nicht ¨andern.
Resumo:
In the first part of the thesis, we propose an exactly-solvable one-dimensional model for fermions with long-range p-wave pairing decaying with distance as a power law. We studied the phase diagram by analyzing the critical lines, the decay of correlation functions and the scaling of the von Neumann entropy with the system size. We found two gapped regimes, where correlation functions decay (i) exponentially at short range and algebraically at long range, (ii) purely algebraically. In the latter the entanglement entropy is found to diverge logarithmically. Most interestingly, along the critical lines, long-range pairing breaks also the conformal symmetry. This can be detected via the dynamics of entanglement following a quench. In the second part of the thesis we studied the evolution in time of the entanglement entropy for the Ising model in a transverse field varying linearly in time with different velocities. We found different regimes: an adiabatic one (small velocities) when the system evolves according the instantaneous ground state; a sudden quench (large velocities) when the system is essentially frozen to its initial state; and an intermediate one, where the entropy starts growing linearly but then displays oscillations (also as a function of the velocity). Finally, we discussed the Kibble-Zurek mechanism for the transition between the paramagnetic and the ordered phase.
Resumo:
This thesis describes the ultra-precise determination of the g-factor of the electron bound to hydrogenlike 28Si13+. The experiment is based on the simultaneous determination of the cyclotron- and Larmor frequency of a single ion, which is stored in a triple Penning-trap setup. The continuous Stern-Gerlach effect is used to couple the spin of the bound electron to the motional frequencies of the ion via a magnetic bottle, which allows the non-destructive determination of the spin state. To this end, a highly sensitive, cryogenic detection system was developed, which allowed the direct, non-destructive detection of the eigenfrequencies with the required precision.rnThe development of a novel, phase sensitive detection technique finally allowed the determination of the g-factor with a relative accuracy of 40 ppt, which was previously inconceivable. The comparison of the hereby determined value with the value predicted by quantumelectrodynamics (QED) allows the verification of the validity of this fundamental theory under the extreme conditions of the strong binding potential of a highly charged ion. The exact agreement of theory and experiment is an impressive demonstration of the exactness of QED. The experimental possibilities created in this work will allow in the near future not only further tests of theory, but also the determination of the mass of the electron with a precision that exceeds the current literature value by more than an order of magnitude.
Resumo:
Nell'ambito delle nanostrutture, un ruolo primario è svolto dai punti quantici. In questo lavoro siamo interessati all'analisi teorica del processo di creazione dei punti quantici: esso può avvenire per eteroepitassia, in particolare secondo il metodo studiato da Stranski-Krastanov. Un film di Germanio viene depositato su un substrato di Silicio in modo coerente, cioè senza dislocazioni, e, a causa del misfit tra le maglie dei due materiali, c'è un accumulo di energia elastica nel film. A una certa altezza critica questa energia del film può essere ridotta se il film si organizza in isole (punti quantici), dove la tensione può essere rilassata lateralmente. L'altezza critica dipende dai moduli di Young (E, υ), dal misfit tra le maglie (m) e dalla tensione superficiali (γ). Il trasporto di materiale nel film è portato avanti per diffusione superficiale. Il punto focale nell'analisi delle instabilità indotte dal misfit tra le maglie dei materiali è la ricerca delle caratteristiche che individuano il modo di crescita più rapido dei punti quantici. In questo lavoro siamo interessati ad un caso particolare: la crescita di punti quantici non su una superficie piana ma sulla superficie di un nanofilo quantico a geometria cilindrica. L'analisi delle instabilità viene condotta risolvendo le equazioni all'equilibrio: a tal fine sono state calcolate le distribuzioni del tensore delle deformazioni e degli sforzo di un nanofilo core-shell con una superficie perturbata al primo ordine rispetto all'ampiezza della perturbazione. L'analisi è stata condotta con particolari condizioni al contorno ed ipotesi geometriche, e diverse scelte dello stato di riferimento del campo degli spostamenti. Risolto il problema elastico, è stata studiata l'equazione dinamica di evoluzione descrivente la diffusione di superficie. Il risultato dell'analisi di instabilità è il tasso di crescita in funzione del numero d'onda q, con diversi valori del raggio del core, spessore dello shell e modo normale n, al fine di trovare il più veloce modo di crescita della perturbazione.
Resumo:
Capire come ottenere l'informazione accessibile, cioè quanta informazione classica si può estrarre da un processo quantistico, è una delle questioni più intricate e affascinanti nell'ambito della teoria dell'informazione quantistica. Nonostante l'importanza della nozione di informazione accessibile non esistono metodi generali per poterla calcolare, esistono soltanto dei limiti, i più famosi dei quali sono il limite superiore di Holevo e il limite inferiore di Josza-Robb-Wootters. La seguente tesi fa riferimento a un processo che coinvolge due parti, Alice e Bob, che condividono due qubits. Si considera il caso in cui Bob effettua misure binarie sul suo qubit e quindi indirizza lo stato del qubit di Alice in due possibili stati. L'obiettivo di Alice è effettuare la misura ottimale nell'ottica di decretare in quale dei due stati si trova il suo qubit. Lo strumento scelto per studiare questo processo va sotto il nome di 'quantum steering ellipsoids formalism'. Esso afferma che lo stato di un sistema di due qubit può essere descritto dai vettori di Bloch di Alice e Bob e da un ellissoide nella sfera di Bloch di Alice generato da tutte le possibili misure di Bob. Tra tutti gli stati descritti da ellissoidi ce ne sono alcuni che manifestano particolari proprietà, per esempio gli stati di massimo volume. Considerando stati di massimo volume e misure binarie si è riuscito a trovare un limite inferiore all'informazione accessibile per un sistema di due qubit migliore del limite inferiore di Josza-Robb-Wootters. Un altro risultato notevole e inaspettato è che l'intuitiva e giustificata relazione 'distanza tra i punti nell'ellissoide - mutua informazione' non vale quando si confrontano coppie di punti ''vicine'' tra loro e lontane dai più distanti.
Resumo:
The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory.rnAs its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained.rnThe constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point.rnFinally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement of existing computations, taking the independent running of the Euler topological term into account. Known perturbative results are reproduced in this case from the renormalization group equation, identifying however a unique non-Gaussian fixed point.rn
Resumo:
The aim of this thesis is to investigate the nature of quantum computation and the question of the quantum speed-up over classical computation by comparing two different quantum computational frameworks, the traditional quantum circuit model and the cluster-state quantum computer. After an introductory survey of the theoretical and epistemological questions concerning quantum computation, the first part of this thesis provides a presentation of cluster-state computation suitable for a philosophical audience. In spite of the computational equivalence between the two frameworks, their differences can be considered as structural. Entanglement is shown to play a fundamental role in both quantum circuits and cluster-state computers; this supports, from a new perspective, the argument that entanglement can reasonably explain the quantum speed-up over classical computation. However, quantum circuits and cluster-state computers diverge with regard to one of the explanations of quantum computation that actually accords a central role to entanglement, i.e. the Everett interpretation. It is argued that, while cluster-state quantum computation does not show an Everettian failure in accounting for the computational processes, it threatens that interpretation of being not-explanatory. This analysis presented here should be integrated in a more general work in order to include also further frameworks of quantum computation, e.g. topological quantum computation. However, what is revealed by this work is that the speed-up question does not capture all that is at stake: both quantum circuits and cluster-state computers achieve the speed-up, but the challenges that they posit go besides that specific question. Then, the existence of alternative equivalent quantum computational models suggests that the ultimate question should be moved from the speed-up to a sort of “representation theorem” for quantum computation, to be meant as the general goal of identifying the physical features underlying these alternative frameworks that allow for labelling those frameworks as “quantum computation”.
Resumo:
Diese Dissertation demonstriert und verbessert die Vorhersagekraft der Coupled-Cluster-Theorie im Hinblick auf die hochgenaue Berechnung von Moleküleigenschaften. Die Demonstration erfolgt mittels Extrapolations- und Additivitätstechniken in der Single-Referenz-Coupled-Cluster-Theorie, mit deren Hilfe die Existenz und Struktur von bisher unbekannten Molekülen mit schweren Hauptgruppenelementen vorhergesagt wird. Vor allem am Beispiel von cyclischem SiS_2, einem dreiatomigen Molekül mit 16 Valenzelektronen, wird deutlich, dass die Vorhersagekraft der Theorie sich heutzutage auf Augenhöhe mit dem Experiment befindet: Theoretische Überlegungen initiierten eine experimentelle Suche nach diesem Molekül, was schließlich zu dessen Detektion und Charakterisierung mittels Rotationsspektroskopie führte. Die Vorhersagekraft der Coupled-Cluster-Theorie wird verbessert, indem eine Multireferenz-Coupled-Cluster-Methode für die Berechnung von Spin-Bahn-Aufspaltungen erster Ordnung in 2^Pi-Zuständen entwickelt wird. Der Fokus hierbei liegt auf Mukherjee's Variante der Multireferenz-Coupled-Cluster-Theorie, aber prinzipiell ist das vorgeschlagene Berechnungsschema auf alle Varianten anwendbar. Die erwünschte Genauigkeit beträgt 10 cm^-1. Sie wird mit der neuen Methode erreicht, wenn Ein- und Zweielektroneneffekte und bei schweren Elementen auch skalarrelativistische Effekte berücksichtigt werden. Die Methode eignet sich daher in Kombination mit Coupled-Cluster-basierten Extrapolations-und Additivitätsschemata dafür, hochgenaue thermochemische Daten zu berechnen.
Resumo:
Der light harvesting complex II (LHCII) ist ein pflanzliches Membranprotein, das in seiner trimeren Form über 40 Chlorophylle bindet. In der Pflanze kann er besonders effizient Licht sammeln und die Anregungsenergie anschließend fast verlustfrei über andere chlorophyll-bindende Proteine an die Reaktionszentren weiterleiten. Aufgrund dieser besonderen Eigenschaften war es ein Ziel dieser Arbeit, rekombinanten LHCII mit synthetischen Komponenten zu kombinieren, die zur Ladungstrennung befähigt sind. Zu diesem Zweck wurden unter anderem Halbleiternanokristalle (Quantum Dots, QDs) ausgewählt, die je nach Zusammensetzung sowohl als Energieakzeptoren als auch als Energiedonoren in Frage kamen. Durch Optimierung des Puffers gelang es, die Fluoreszenzquantenausbeute der QDs in wässriger Lösung zu erhöhen und zu stabilisieren, so dass die Grundvoraussetzungen für die spektroskopische Untersuchung verschiedener LHCII-QD-Hybridkomplexe erfüllt waren.rnUnter Verwendung bereits etablierter Affinitätssequenzen zur Bindung des LHCII an die QDs konnte gezeigt werden, dass die in dieser Arbeit verwendeten Typ-I QDs aus CdSe und ZnS sich kaum als Energie-Donoren für den LHCII eignen. Ein Hauptgrund lag im vergleichsweise kleinen Försterradius R0 von 4,1 nm. Im Gegensatz dazu wurde ein R0 von 6,4 nm für den LHCII als Donor und Typ-II QDs aus CdTe, CdSe und ZnS als Akzeptor errechnet, wodurch in diesem System eine höhere Effizienz des Energietransfers zu erwarten war. Fluoreszenzspektroskopische Untersuchungen von Hybridkomplexen aus LHCII und Typ-II QDs ergaben eine hohe Plausibilität für einen Fluoreszenz Resonanz Energietransfer (FRET) vom Lichtsammler auf die QDs. Weitere QD-Affinitätssequenzen für den LHCII wurden identifiziert und deren Bindekonstanten ermittelt. Versuche mit dem Elektronenakzeptor Methylviologen lieferten gute Hinweise auf eine LHCII-sensibilisierte Ladungstrennung der Typ-II QDs, auch wenn dies noch anhand alternativer Messmethoden wie z.B. durch transiente Absorptionsspektroskopie bestätigt werden muss. rnEin weiteres Ziel war die Verwendung von LHCII als Lichtsammler in dye-sensitized solar cells (DSSC). Geeignete dotierte TiO2-Platten wurden ermittelt, das Verfahren zur Belegung der Platten optimiert und daher mit wenig Aufwand eine hohe LHCII-Belegungsdichte erzielt. Erste Messungen von Aktionsspektren mit LHCII und einem zur Ladungstrennung fähigen Rylenfarbstoff zeigen eine, wenn auch geringe, LHCII sensibilisierte Ladungstrennung. rnDie Verwendung von Lanthanide-Binding-Tags (LBTs) ist ein potentielles Verfahren zur in vivo-Markierung von Proteinen mit Lanthanoiden wie Europium und Terbium. Diese Metalle besitzen eine überdurchschnittlich lange Lumineszenzlebensdauer, so dass sie leicht von anderen fluoreszierenden Molekülen unterschieden werden können. Im Rahmen der vorliegenden Arbeit gelang es, eine LBT in rekombinanten LHCII einzubauen und einen Lumineszenz Resonanz Energietransfer (LRET) vom Europium auf den LHCII nachzuweisen.rn
Resumo:
In questa tesi abbiamo studiato il comportamento delle entropie di Entanglement e dello spettro di Entanglement nel modello XYZ attraverso delle simulazioni numeriche. Le formule per le entropie di Von Neumann e di Renyi nel caso di una catena bipartita infinita esistevano già, ma mancavano ancora dei test numerici dettagliati. Inoltre, rispetto alla formula per l'Entropia di Entanglement di J. Cardy e P. Calabrese per sistemi non critici, tali relazioni presentano delle correzioni che non hanno ancora una spiegazione analitica: i risultati delle simulazioni numeriche ne hanno confermato la presenza. Abbiamo inoltre testato l'ipotesi che lo Schmidt Gap sia proporzionale a uno dei parametri d'ordine della teoria, e infine abbiamo simulato numericamente l'andamento delle Entropie e dello spettro di Entanglement in funzione della lunghezza della catena di spin. Ciò è stato possibile solo introducendo dei campi magnetici ''ad hoc'' nella catena, con la proprietà che l'andamento delle suddette quantità varia a seconda di come vengono disposti tali campi. Abbiamo quindi discusso i vari risultati ottenuti.
Resumo:
Il contenuto fisico della Relatività Generale è espresso dal Principio di Equivalenza, che sancisce l'equivalenza di geometria e gravitazione. La teoria predice l'esistenza dei buchi neri, i più semplici oggetti macroscopici esistenti in natura: essi sono infatti descritti da pochi parametri, le cui variazioni obbediscono a leggi analoghe a quelle della termodinamica. La termodinamica dei buchi neri è posta su basi solide dalla meccanica quantistica, mediante il fenomeno noto come radiazione di Hawking. Questi risultati gettano una luce su una possibile teoria quantistica della gravitazione, ma ad oggi una simile teoria è ancora lontana. In questa tesi ci proponiamo di studiare i buchi neri nei loro aspetti sia classici che quantistici. I primi due capitoli sono dedicati all'esposizione dei principali risultati raggiunti in ambito teorico: in particolare ci soffermeremo sui singularity theorems, le leggi della meccanica dei buchi neri e la radiazione di Hawking. Il terzo capitolo, che estende la discussione sulle singolarità, espone la teoria dei buchi neri non singolari, pensati come un modello effettivo di rimozione delle singolarità. Infine il quarto capitolo esplora le ulteriori conseguenze della meccanica quantistica sulla dinamica dei buchi neri, mediante l'uso della nozione di entropia di entanglement.
Resumo:
The 1-D 1/2-spin XXZ model with staggered external magnetic field, when restricting to low field, can be mapped into the quantum sine-Gordon model through bosonization: this assures the presence of soliton, antisoliton and breather excitations in it. In particular, the action of the staggered field opens a gap so that these physical objects are stable against energetic fluctuations. In the present work, this model is studied both analytically and numerically. On the one hand, analytical calculations are made to solve exactly the model through Bethe ansatz: the solution for the XX + h staggered model is found first by means of Jordan-Wigner transformation and then through Bethe ansatz; after this stage, efforts are made to extend the latter approach to the XXZ + h staggered model (without finding its exact solution). On the other hand, the energies of the elementary soliton excitations are pinpointed through static DMRG (Density Matrix Renormalization Group) for different values of the parameters in the hamiltonian. Breathers are found to be in the antiferromagnetic region only, while solitons and antisolitons are present both in the ferromagnetic and antiferromagnetic region. Their single-site z-magnetization expectation values are also computed to see how they appear in real space, and time-dependent DMRG is employed to realize quenches on the hamiltonian parameters to monitor their time-evolution. The results obtained reveal the quantum nature of these objects and provide some information about their features. Further studies and a better understanding of their properties could bring to the realization of a two-level state through a soliton-antisoliton pair, in order to implement a qubit.
Resumo:
La quantum biology (QB) è un campo di ricerca emergente che cerca di affronta- re fenomeni quantistici non triviali all’interno dei contesti biologici dotandosi di dati sperimentali di esplorazioni teoriche e tecniche numeriche. I sistemi biologici sono per definizione sistemi aperti, caldi,umidi e rumorosi, e queste condizioni sono per loro imprenscindibili; si pensa sia un sistema soggetto ad una veloce decoerenza che sopprime ogni dinamica quantistica controllata. La QB, tramite i principi di noise assisted transport e di antenna fononica sostiene che la presenza di un adeguato livello di rumore ambientale aumenti l’efficienza di un network di trasporto,inoltre se all’interno dello spettro ambientale vi sono specifici modi vibrazionali persistenti si hanno effetti di risonanza che rigenerano la coerenza quantistica. L’interazione ambiente-sistema è di tipo non Markoviano,non perturbativo e di forte non equi- librio, ed il rumore non è trattato come tradizionale rumore bianco. La tecnica numerica che per prima ha predetto la rigenerazione della coerenza all’interno di questi network proteici è stato il TEBD, Time Evolving Block Decimation, uno schema numerico che permette di simulare sistemi 1-D a molti corpi, caratterizzati da interazioni di primi vicini e leggermente entangled. Tramite gli algoritmi numerici di Orthopol l’hamiltoniana spin-bosone viene proiettata su una catena discreta 1-D, tenendo conto degli effetti di interazione ambiente-sistema contenuti nello spettro(il quale determina la dinamica del sistema).Infine si esegue l’evoluzione dello stato.
Resumo:
BCJ-relations have a series of important consequences in Quantum FieldrnTheory and in Gravity. In QFT, one can use BCJ-relations to reduce thernnumber of independent colour-ordered partial amplitudes and to relate nonplanarrnand planar diagrams in loop calculations. In addition, one can usernBCJ-numerators to construct gravity scattering amplitudes through a squaringrn procedure. For these reasons, it is important to nd a prescription tornobtain BCJ-numerators without requiring a diagram by diagram approach.rnIn this thesis, after introducing some basic concepts needed for the discussion,rnI will examine the existing diagrammatic prescriptions to obtainrnBCJ-numerators. Subsequently, I will present an algorithm to construct anrneective Yang-Mills Lagrangian which automatically produces kinematic numeratorsrnsatisfying BCJ-relations. A discussion on the kinematic algebrarnfound through scattering equations will then be presented as a way to xrnnon-uniqueness problems in the algorithm.