979 resultados para pyrylium salts


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Full conformational and energy explorations are conducted on an organic ionic plastic crystal, 1-ethyl-1-methylpyrrolidium tetrafluoroborate [C2 mpyr][BF4 ]. The onsets of various stages of dynamic behaviour, which appear to account for low-temperature solid-solid phase transitions, are investigated by using quantum-chemical simulations. It is suggested that pseudorotation of the pyrrolidine ring occurs in the first instance; the partial rotation of the entire cation subsequently occurs and may be accompanied by reorientation of the ethyl chain as the temperature increases further. A cation-anion configuration, whereby BF4 (-) interacts with the C2 mpy cation from the side of the ring, is the most likely structure in the low-temperature phase IV region. These interpretations are supported by (13) C nuclear magnetic resonance chemical-shift analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immobilization of catechol derivatives on GC electrode surfaces can be performed by in situ generation and reduction of nitrocatechol. We present the oxidative nitration of catechol in the presence of nitrous acid followed by electrochemically reduction of the generated nitro aromatic group to the corresponding amine group and its conversion to diazonium cation at the electrode surface to yield a surface covalently modified with catechol. In this manner, some derivatives of catechol can be immobilized on the electrode surface. Whole of the process is carried out in Triethylammonium acetate ionic liquid as an inert and neutral medium (pH∼7.0). Surface coverage can be easily controlled by the applied potential, time and concentration of catechol. After modification, the electrochemical features of modified surface have been studied. Also modified GC electrode exhibited remarkable catalytic activity in the oxidation of NADH. The catalytic currents were proportional to the concentration of NADH over the range 0.01-0.80 mM. This condition can be used for modification of GC surfaces by various aromatic molecules for different application such as design of sensors and biosensors. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A specific metal ion-responsive lipid liquid crystalline (LLC) dispersion system was fabricated, which can work in buffer solutions. The LLC matrix was prepared from phytantriol which spontaneously forms the reversed bicontinuous cubic phase in water, and a novel peptide-lipid conjugate (peplipid) consists of a myristate alkyl chain for anchoring into the phytantriol-based cubic bilayer and a peptide sequence for capturing a specific metal ion. The peplipid in its unbound state, when added into the phytantriol-based cubic system induces a positive effect on the bilayer curvature, resulting in the formation of the lamellar phase (vesicles) and the dispersion was transparent in appearance. Upon binding of the cadmium ion, the peplipid induces a negative effect on the lipid bilayer curvature and consequently leading to the formation of cubic phase and opaque appearance. In contrast, other metal ions, including buffering salts, could not sufficiently trigger the phase transition due to weak interaction with the peplipid. The high selectivity of metal ion interaction and triggered phase transition provide potential applications, such as in colloidal-mineral separation, triggered drug release and treatment of cadmium (II) pollution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monoethanolamine (MEA) is the benchmark solvent for the capture of carbon dioxide from both natural gas and flue gas streams. Despite its effectiveness in absorbing CO2, this solvent can react with impurities in the gas stream to form heat stable salts and other degradation products. These impurities can cause problems such as an increase in solvent viscosity and corrosion of the operating units. Thus, a number of approaches have been considered to mitigate the occurrence of these problems. In this paper, the use of electrodialysis as an online MEA reclamation process in a postcombustion CO2 capture facility is investigated. The study shows that high heat stable salts removal can be achieved with a high MEA recovery. However, it is necessary to limit the current density, particularly at lower salt concentrations, to reduce water splitting. The stability of the commercial ion-exchange membranes in the highly alkaline solvent is also investigated. The results show that the membranes are stable upon exposure to 30 wt % MEA for at least 4.5 months.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As highlighted by the recent ChemComm web themed issue on ionic liquids, this field continues to develop beyond the concept of interesting new solvents for application in the greening of the chemical industry. Here some current research trends in the field will be discussed which show that ionic liquids research is still aimed squarely at solving major societal issues by taking advantage of new fundamental understanding of the nature of these salts in their low temperature liquid state. This article discusses current research trends in applications of ionic liquids to energy, materials, and medicines to provide some insight into the directions, motivations, challenges, and successes being achieved with ionic liquids today.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen sulphide (H2S) gas emission in sewer networks is associated with several problems including the release of dangerous odour to the atmosphere and sewer pipe corrosion. The release of odour can endanger public health and corrode sewer pipe walls. Sewer corrosion has the potential to cost water utilities millions of dollars to maintain and rehabilitate the affected sewer pipes. Some chemical mitigation strategies to control hydrogen sulphide emission have been introduced. These include but are not limited to the injection of oxygen, magnesium and sodium hydroxide, calcium nitrate and iron salts. The optimisation of the dosing rate and location of each chemical mitigation strategy is required to achieve maximum hydrogen sulphide gas removal efficiency along with cost effectiveness. In this review paper, the five most popular chemical mitigation strategies that were previously mentioned have been investigated and discussed. The article is broken down into three main discussions. Firstly the sewer transformation processes and factors affecting the hydrogen sulphide generation and emission are highlighted. Secondly, comparisons and differences between each selected chemical mitigation strategy as well as its application covered. Finally, the review of the chemical efficiency and cost is conducted by comparing two case studies in controlling the formation of dissolved sulphide. It was found that the injection of oxygen is the cheapest mitigation strategy of hydrogen sulphide gas generation in sewers, but least effective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The addition of diluents to ionic liquids (ILs) has recently been shown to enhance the transport properties of ILs. In the context of electrolyte design, this enhancement allows the realisation of IL-based electrolytes for metal-air batteries and other storage devices. It is likely that diluent addition not only impacts the viscosity of the IL, but also the ion-ion interactions and structure. Here, we investigate the nano-structured 1-methyl-3-octylimidazolium chloride (OMImCl) with varying water concentrations in the presence of two metal salts, zinc chloride and magnesium chloride. We find that the choice of metal salt has a significant impact on the structure and transport properties of the system; this is explained by the water structuring and destructing properties of the metal salt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of organic ionic plastic crystals (OIPCs) as a new class of solid electrolyte for energy storage devices such as lithium batteries and, more recently, sodium batteries is attracting increasing attention. Key to this is achieving sufficient target ion transport through the material. This requires fundamental understanding of the structure and dynamics of OIPCs that have been doped with the necessary lithium or sodium salts. Here we report, for the first time, the atomic level structure and transport of both lithium and sodium ions in the plastic crystalline phases of an OIPC diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate. These molecular dynamics simulations reveal two types of coordination geometries of the alkali metal ion first solvation shells, which cooperate closely with the metal ion hopping motion. The significantly different ion migration rates between two metal ion doped systems could also be related to the differences in solvation structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the thermal, structural and conductivity properties of the organic ionic plastic crystal (OIPC) N-methyl-N-methyl-pyrrolidinium dicyanamide [C1mpyr][N(CN)2] mixed with the sodium salt Na[N(CN)2]. The DSC thermal traces indicate that an isothermal transition, which may be a eutectic melting, occurs at ~ 89 °C, below which all compositions are entirely in the solid phase. At 20 mol% Na[N(CN)2], this transition is the final melt for this mixture, and a new liquidus peak grows beyond 20 mol% Na[N(CN)2]. The III- > II solid-solid phase transition continues to be evident at ~- 2 °C. The microstructure for all the mixtures indicated a phase separated morphology where precipitates can be clearly observed. Most likely, these precipitates consist of a Na-rich second phase. This was also suggested from the vibrational spectroscopy and the 23Na NMR spectra. The lower concentrations of Na[N(CN)2] present complex 23Na MAS spectra, suggesting more than one sodium ion environment is present in these mixtures consistent with complex phase behavior. Unlike other OIPCs where the ionic conductivity usually increases upon doping or mixing in a second component, the conductivity of these mixtures remains relatively constant and above 10- 4 S cm- 1 at ∼ 80 °C, even in the solid state. Such high conductivities suggest these materials may be promising to be used for all solid-state electrochemical devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Owing to the unique properties of certain Ionic liquids (ILs) as safe and green solvents, as well as the potential of sodium as an alternative to lithium as charge carriers, we investigate gel sodium electrolytes as safe, low cost and high performance materials with sufficient mechanical properties for application in sodium battery technologies. We investigate the effect of formation of two types of gel electrolytes on the properties of IL electrolytes known to support Na/Na+ electrochemistry. The ionic conductivity is only slightly decreased by 0.0005 and 0.0002 S cm-1 in the case of 0.3 and 0.5 M NaNTf2 systems respectively as the physical properties transition from liquid to gel. We observed facile plating and stripping of Na metal around 0 V vs. Na/Na+ through the cyclic voltammetry. A wide-temperature range of the gelled IL state, of more than 100 K around room temperature, is achieved in the case of 0.3 and 0.5 M NaNTf2. We conclude that the formation of a gel does not significantly affect the liquid-like ion dynamics in these materials, as further evidenced by DSC and FTIR analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent advances in thermoelectrochemical cells, which are being developed for harvesting low grade waste heat, have shown the promise of cobalt bipyridyl salts as the active redox couple. The Seebeck coefficient, Se, of a redox couple determines the open circuit voltage achievable, for a given temperature gradient, across the thermoelectrochemical cell. Thus, the accurate determination of this thermodynamic parameter is key to the development and study of new redox electrolytes. Further, techniques for accurate determination of Se using only one half of the redox couple reduces the synthetic requirements. Here, we compare three different experimental techniques for measuring Se of a cobalt tris(bipyridyl) redox couple in ionic liquid electrolytes. The use of temperature dependent cyclic voltammetry (CV) in isothermal and non-isothermal cells was investigated in depth, and the Se values compared to those from thermo-electromotive force measurements. Within experimental error, the Se values derived from CV methods were found to be in accordance with those obtained from electromotive force (emf) measurements. The applicability of cyclic voltammetry techniques for determining Se when employing only one part of the redox couple was demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three useful developments in the preparation of guanidines are presented herein. A collection of bis(Boc)aminoalkylguanidines (n=2, 3, 4 and 6; Boc=tert-butoxycarbonyl), known to be prone to cyclisation, have been synthesised and isolated without chromatography as shelf-stable sulfonate salts in good yield (up to 94%). Secondly, a selection of guanidines tethered to a range of other functional groups, including alkyne, alkene, alcohol, and azide, have been prepared in good yields with no requirement for a purification step, and thirdly an inexpensive, high-yielding (93%), and facile synthesis of N,N'-bis(Boc)guanidine, a key precursor for N,N'-bis(Boc)-N'-triflylguanidine, is described in which the need for chromatographic purification is again obviated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

S-Benzylisothiouronium halides are used as shelf-stable, odorless thiol equivalents. The method developed is used to access 2-(benzylthio)-4-(trifluoromethyl)thiazole carboxyl building blocks. Using the latent trifluoromethyl substituent the reactions could be monitored using 19F NMR spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incorporation of polyvinylidene difluoride (PVDF) electrospun nanofibres within N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF4] was investigated with a view to fabricating self-standing membranes for various electrochemical device applications, in particular lithium metal batteries. Significant improvement in mechanical properties and ionic conduction was demonstrated in a previous study, which also demonstrated the remarkably high performance of the lithium-doped composite material in a device. We now seek a fundamental understanding of the role of fibres within the matrix of the plastic crystal, which is essential for optimizing device performance through fine-tuning of the composite material properties. The focus of the current study is therefore a thorough investigation of the phase behaviour and conduction behaviour of the pure and the lithium-doped (as LiBF4) plastic crystal, with and without incorporation of polymer nanofibres. Analysis of the structure of the plastic crystal, including the effects of lithium ions and the incorporation of PVDF fibres, was conducted by means of synchrotron XRD. Ion dynamics were evaluated using VT solid-state NMR spectroscopy. ATR-FTIR spectroscopy was employed to gain insights into the molecular interactions of doped lithium ions and/or the PVDF nanofibres in the matrix of the [C2mpyr][BF4] composites. Preliminary measurements using PALS were conducted to probe structural defects within the pure materials. It was found that ion transport within the plastic crystal was significantly altered by doping with lithium ions due to the precipitation of a second phase in the structure. The incorporation of the fibres activated more mobile sites in the systems, but restricted ion mobility with different trends being observed for each ion species in each crystalline phase. In the presence of the fibres a strong interaction observed between the Li ion and the pyrrolidinium ring disappeared and formation of the second phase was prevented. As a result, an increased number of mobile lithium ions are released into the solid solution structure of the matrix, simultaneously removing the blocking effect of the second phase. Thus, ion conduction was remarkably improved within the Li-doped composite compared to the neat Li-doped plastic crystal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid state phases of organic salts, whose chemistry is closely related to that of ionic liquids, often show interesting phase behavior and dynamics resulting in solid-state conductors that have potential application in electrochemical devices such as solid state batteries. The mechanism of conduction in these solid-state plastic crystal phases is still not entirely understood. We have recently shown using molecular dynamics (MD) simulations that the introduction of defects, such as vacancies, leads to heterogeneous dynamics in the OIPC arising from amorphous and mobile domains in these materials. Advanced magnetic resonance imaging (MRI) analysis indicates that these domains can exhibit distinct orientations, leading to anisotropic ionic conductivity with enhanced values in a particular direction. This paper will review this new understanding, drawing links between the molecular and macroscopic-level information provided by these two techniques.