971 resultados para pore size distribution


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stability of airborne nanoparticle agglomerates is important for occupational exposure and risk assessment in determining particle size distribution of nanomaterials. In this study, we developed an integrated method to test the stability of aerosols created using different types of nanomaterials. An aerosolization method, that resembles an industrial fluidized bed process, was used to aerosolize dry nanopowders. We produced aerosols with stable particle number concentrations and size distributions, which was important for the characterization of the aerosols' properties. Next, in order to test their potential for deagglomeration, a critical orifice was used to apply a range of shear forces to them. The mean particle size of tested aerosols became smaller, whereas the total number of particles generated grew. The fraction of particles in the lower size range increased, and the fraction in the upper size range decreased. The reproducibility and repeatability of the results were good. Transmission electron microscopy imaging showed that most of the nanoparticles were still agglomerated after passing through the orifice. However, primary particle geometry was very different. These results are encouraging for the use of our system for routine tests of the deagglomeration potential of nanomaterials. Furthermore, the particle concentrations and small quantities of raw materials used suggested that our system might also be able to serve as an alternative method to test dustiness in existing processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymeric nanoparticle systems such as nanocapsules and nanospheres present potential applications for the administration of therapeutic molecules. The physico-chemical characteristics of nanoparticle suspensions are important pre-requisites of the success of any dosage form development. The purpose of this review is to present the state of the art regarding the physico-chemical characterization of these drug carriers, in terms of the particle size distribution, the morphology, the polymer molecular weight, the surface charge, the drug content and the in vitro drug release profiles. Part of the review is devoted to the description of the techniques to improve the stability of colloidal systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diplomityön tavoitteena oli tutkia höyrykattiloiden leijukerrosten käytettävyysongelmia ja kirjallisuudesta löytyvien diagnostiikkamenetelmien toimivuutta leijukerroksen tilan ja käytettävyysongelmien tunnistamiseksi. Diagnostiikkamenetelmien toimivuutta testattiin VTT:n kiertoleijukoelaitteen prosessimittauksiin perustuen. Analysoinnissa käytettiin prosessimittauksia, jotka ovat yleisesti käytössä energiantuotannon leijukerroskattiloissa. Analysoitavina koeajotapauksina olivat kylmäkokeet partikkelikokojakaumaltaan vaihtelevalle leijutusmateriaalille, tuhkapartikkelien aiheuttama petimateriaalin karkeneminen ja agglomeroituminen, sekä vaihtelevien ajoarvojen vaikutus leijukerroksen hydrodynaamiseen käyttäytymiseen. Kokeellisesta osiosta saaduista tuloksista selvisi leijutusilman tilavuusvirran, petimassan ja partikkelikoon vaikutus analysoitavaan prosessimittaukseen. Tuloksista oli havaittavissa myös kiertävän petimateriaalin ja pohjapedin osuuksien vaikutus mitattuun painesignaaliin. Petipartikkelien agglomeroitumisen ja karkenemisen todettiin lisäävän kiertoleijukoelaitteistossa nousuputken pohjapedin määrää suhteessa kiertävään petimateriaaliin, mikä voitiin havaita painemittauksista.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of load-bearing osseous implant with desired mechanical and surface properties in order to promote incorporation with bone and to eliminate risk of bone resorption and implant failure is a very challenging task. Bone formation and resoption processes depend on the mechanical environment. Certain stress/strain conditions are required to promote new bone growth and to prevent bone mass loss. Conventional metallic implants with high stiffness carry most of the load and the surrounding bone becomes virtually unloaded and inactive. Fibre-reinforced composites offer an interesting alternative to metallic implants, because their mechanical properties can be tailored to be equal to those of bone, by the careful selection of matrix polymer, type of fibres, fibre volume fraction, orientation and length. Successful load transfer at bone-implant interface requires proper fixation between the bone and implant. One promising method to promote fixation is to prepare implants with porous surface. Bone ingrowth into porous surface structure stabilises the system and improves clinical success of the implant. The experimental part of this work was focused on polymethyl methacrylate (PMMA) -based composites with dense load-bearing core and porous surface. Three-dimensionally randomly orientated chopped glass fibres were used to reinforce the composite. A method to fabricate those composites was developed by a solvent treatment technique and some characterisations concerning the functionality of the surface structure were made in vitro and in vivo. Scanning electron microscope observations revealed that the pore size and interconnective porous architecture of the surface layer of the fibre-reinforced composite (FRC) could be optimal for bone ingrowth. Microhardness measurements showed that the solvent treatment did not have an effect on the mechanical properties of the load-bearing core. A push-out test, using dental stone as a bone model material, revealed that short glass fibre-reinforced porous surface layer is strong enough to carry load. Unreacted monomers can cause the chemical necrosis of the tissue, but the levels of leachable resisidual monomers were considerably lower than those found in chemically cured fibre-reinforced dentures and in modified acrylic bone cements. Animal experiments proved that surface porous FRC implant can enhance fixation between bone and FRC. New bone ingrowth into the pores was detected and strong interlocking between bone and the implant was achieved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tässä diplomityössä tutkittiin keraamisten mikrosuodatuskalvojen soveltuvuutta kiintoaineen erottamiseen happamasta PLS-liuoksesta eri huokoskoon omaavilla mikrosuodatuskalvoilla. Koelaitteistolla suodatettiin puhdasta vettä, kaoliinipitoista vesiliuosta sekä hapanta kuparia, kalsiumia ja kaoliinia sisältävää malliliuosta. Koeajojen tavoitteena oli saada tietoa permeaattivuon maksimimäärästä eri mikrosuodatuskalvoilla sekä tuotteen puhtaudesta. Näiden lisäksi saatiin tietoa kalvojen likaantumisesta ajon aikana. Teoriaosassa käsiteltiin yleisesti kalvosuodatusta, esitettiin yleiset kalvotekniset menetelmät ja sovellukset sekä käytiin läpi tutkimuksia samankaltaisiin kalvoihin ja sovelluksiin liittyen. Lisäksi teoriaosuudessa pohdittiin mahdollisuutta käyttää myös muita, kuin putkimoduulisia mikrosuodatuskalvoja. Myös työhön oleellisena taustana kuuluvaa hydrometallurgiaa tarkasteltiin teoreettiselta kannalta. Puhtaan veden suodatuskoetuloksista havaittiin, että kaikki kalvot jäivät selvästi valmistajan ilmoittamista arvoista. 1,0 µm CoMetas CoMem® kalvon teoreettinen vesivuo on 10 m3/(h bar) ja 3,0 µm CoMetas CoMem® teoreettinen vesivuo on yli 50 m3/(h bar). Näistä parhaimman vuon arvon sai 1,0 µm CoMetas CoMem® mikrosuodatuskalvo. Tämä kalvo oli paras sekä veden suodatuksissa että malliliuoksella tehdyillä suodatuksilla. Malliliuoksella saavutettiin n. 2000 L/(m2 h) paineen ollessa 2,0 bar ja virtausnopeuden ollessa 4,4 m/s. Vastaavat vesiajon tulokset olivat n. 1100 L/(m2 h) paineen ollessa 1,0 bar ja virtausnopeuden 2,9 m/s. Kaikki kolme käytettyä kalvoa pidättivät kaoliiniliuoksen 81–100 %:sesti. Kuparipitoista malliliuosta suodatettaessa pystyttiin vastaavasti erottamaan 77–99 % kiintoaineesta. Koeajoissa kuitenkin havaittiin huomattava vuon arvojen putoaminen, joka johtui kalvon likaantumisesta. Huomioitavaa oli kuitenkin, että hapanta malliliuosta suodatettaessa permeaattivuon arvot olivat kaoliiniliuoksen suodatuksessa saatuja vastaavia arvoja korkeammat.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In many industries, such as petroleum production, and the petrochemical, metal, food and cosmetics industries, wastewaters containing an emulsion of oil in water are often produced. The emulsions consist of water (up to 90%), oils (mineral, animal, vegetable and synthetic), surfactants and other contaminates. In view of its toxic nature and its deleterious effects on the surrounding environment (soil, water) such wastewater needs to be treated before release into natural water ways. Membrane-based processes have successfully been applied in industrial applications and are considered as possible candidates for the treatment of oily wastewaters. Easy operation, lower cost, and in some cases, the ability to reduce contaminants below existing pollution limits are the main advantages of these systems. The main drawback of membranes is flux decline due tofouling and concentration polarisation. The complexity of oil-containing systems demands complementary studies on issues related to the mitigation of fouling and concentration polarisation in membranebased ultrafiltration. In this thesis the effect of different operating conditions (factors) on ultrafiltration of oily water is studied. Important factors are normally correlated and, therefore, their effect should be studied simultaneously. This work uses a novel approach to study different operating conditions, like pressure, flow velocity, and temperature, and solution properties, like oil concentration (cutting oil, diesel, kerosene), pH, and salt concentration (CaCl2 and NaCl)) in the ultrafiltration of oily water, simultaneously and in a systematic way using an experimental design approach. A hypothesis is developed to describe the interaction between the oil drops, salt and the membrane surface. The optimum conditions for ultrafiltration and the contribution of each factor in the ultrafiltration of oily water are evaluated. It is found that the effect on permeate flux of the various factors studied strongly depended on the type of oil, the type of membrane and the amount of salts. The thesis demonstrates that a system containing oil is very complex, and that fouling and flux decline can be observed even at very low pressures. This means that only the weak form of the critical flux exists for such systems. The cleaning of the fouled membranes and the influence of different parameters (flow velocity, temperature, time, pressure, and chemical concentration (SDS, NaOH)) were evaluated in this study. It was observed that fouling, and consequently cleaning, behaved differently for the studied membranes. Of the membranes studied, the membrane with the lowest propensity for fouling and the most easily cleaned was the regenerated cellulose membrane (C100H). In order to get more information about the interaction between the membrane and the components of the emulsion, a streaming potential study was performed on the membrane. The experiments were carried out at different pH and oil concentration. It was seen that oily water changed the surface charge of the membrane significantly. The surface charge and the streaming potential during different stages of filtration were measured and analysed being a new method for fouling of oil in this thesis. The surface charge varied in different stages of filtration. It was found that the surface charge of a cleaned membrane was not the same as initially; however, the permeability was equal to that of a virgin membrane. The effect of filtration mode was studied by performing the filtration in both cross-flow and deadend mode. The effect of salt on performance was considered in both studies. It was found that salt decreased the permeate flux even at low concentration. To test the effect of hydrophilicity change, the commercial membranes used in this thesis were modified by grafting (PNIPAAm) on their surfaces. A new technique (corona treatment) was used for this modification. The effect of modification on permeate flux and retention was evaluated. The modified membranes changed their pore size around 33oC resulting in different retention and permeability. The obtained results in this thesis can be applied to optimise the operation of a membrane plant under normal or shock conditions or to modify the process such that it becomes more efficient or effective.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of drug concentration, oil phase, and surfactants on the characteristics of dexamethasone-loaded nanocapsules was investigated. The best formulations were obtained at dexamethasone concentrations of 0.25 and 0.50 mg.mL-1 (encapsulation efficiency: 80-90%; mean size: 189-253 nm). The type of oil phase influenced only the stability of dexamethasone-loaded nanocapsules. The association of polysorbate 80 and sorbitan monooleate provided a more stable formulation. Sunflower oil and sorbitan sesquioleate used for the first time as oil phase and surfactant for nanocapsules, respectively, have allowed obtaining suspensions with low mean size and narrow size distribution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sediment samples from Tietê river were submitted to chemical and sequential extractions of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn). It was followed a single extraction by using 0.1 mol L-1 hydrochloric acid and a sequential procedure to evaluate possible chemical associations described as exchangeable, carbonate, reducible oxides, sulfide, organic matter and residual fractions. High concentrations of heavy metals were determined at Pirapora reservoir, which is closer to the Metropolitan Area of São Paulo while for Barra Bonita reservoir, the results showed low concentrations for such elements. Acid volatile sulfides, grain size distribution and carbon contents were also determined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Samplings of atmospheric particulate matter (PM) were carried out between the months of March and April of 2007, simultaneously in two areas of Londrina, an urban (Historical Museum) and other rural (Farm School-UEL). PM was collected using the cascade impactor consisting of four impaction stages (0.25 to 10 μm). The results indicated that the fine fraction (PM2.5) represented a significant portion of the mass of PM10 (70 and 67% in the urban and rural places, respectively). Cl-, NO3- and SO4(2-) were determined by ion chromatography and the size distribution is presented. Natural and anthropogenic sources were suggested to the ionic components in the fine and coarse mode of PM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work reports the development of polymeric nanocapsules containing lipoic acid prepared by interfacial deposition of poli(ε-caprolactona). The suspensions showed acid pH and encapsulation efficiencies from 77 to 90%. Zeta potential values were from -7.42 to -5.43 mV and particle sizes were lower than 340 nm with polidispersion lower than 0.3. The stability of nanocapsules within 28 days was evaluated in terms of pH, lipoic acid content, diameter, size distribution, zeta potential and measurements of relative light backscattering. The stability of formulations containing free lipoic acid was also evaluated. Nanoencapsulation drastically improved the physico-chemical stability of lipoic acid.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work proposes an analytical procedure for direct determination of calcium, magnesium, manganese and zinc in buffalo milk by flame atomic absorption spectrometry (FAAS). Samples were diluted with a solution containing 10% (v/v) of water-soluble tertiary amines (CFA-C) at pH 8. For comparison, buffalo milk samples were digested with HNO3 and H2O2. According to a paired t-test, the results obtained in the determination of Ca, Mg, Mn and Zn in digested samples and in 10% (v/v) CFA-C medium were in agreement at a 95% confidence level. The developed procedure is simple, rapid, decrease the possibility of contamination and can be applied for the routine determination of Ca, Mg, Mn and Zn in buffalo milk samples without any difficulty caused by matrix constituents, such as fat content, and particle size distribution in the milk emulsion.