963 resultados para plasma spraying, surface modification, sphene, osteoblasts, titanium alloy


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The importance of particle size in titanium (Ti) fabricated by powder metallurgy for the surface energy and its impact on the apatite formation was investigated. Four sorts of Ti powders of different mean particle size were realized through 20 min, 2 h, 5 h and 8 h of ball milling, respectively. Each sort of Ti powder was used to fabricate porous Ti and its nonporous counterparts sharing similar surface morphology, grain size and chemical composition, and then alkali-heat treatment was conducted on them. Surface energy was measured on the surfaces of the nonporous Ti counterparts due to the difficulty in measuring the porous surfaces directly. The surface energy increase on the alkali-heat-treated porous and nonporous Ti was observed due to the decrease in the particle size of the Ti powders and the presence of Ti–OH groups brought by the alkali-heat treatment. The apatite-inducing ability of the alkali-heat-treated porous and nonporous Ti with different surface energy values was evaluated in modified simulated body fluid and results indicated that there was a strong correlation between the apatite-inducing ability and the surface energy. The alkali-heat-treated porous and nonporous Ti discs prepared from the powders with an average particle size of 5.89 ± 0.76 μm possessed the highest surface energy and the best apatite-inducing ability when compared to the samples produced from the powders with the average particle size varying from 19.79 ± 0.31 to 10.25 ± 0.39 μm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Porous titanium (Ti) and titanium alloys are promising scaffold biomaterials for bone tissue engineering, because they have the potential to provide new bone tissue ingrowth abilities and low elastic modulus to match that of
natural bone. In the present study, a new highly porous Ti6Ta4Sn alloy scaffold with the addition of biocompatible alloying elements (tantalum (Ta) and tin (Sn)) was prepared using a space-holder sintering method. The
strength of the Ti6Ta4Sn scaffold with a porosity of 75% was found to be significantly higher than that of a pure Ti scaffold with the same porosity. The elastic modulus of the porous alloy can be customized to match that of
human bone by adjusting its porosity. In addition, the porous Ti6Ta4Sn alloy exhibited an interconnected porous structure, which enabled the ingrowth of new bone tissues. Cell culture results revealed that human SaOS2
osteoblast-like cells grew and spread well on the surfaces of the solid alloy, and throughout the porous scaffold. The surface roughness of the alloy showed a significant effect on the cell behavior, and the optimum surface
roughness range for the adhesion of the SaOS2 cell on the alloy was 0.15 to 0.35 mm. The present study illustrated the feasibility of using the porous Ti6Ta4Sn alloy scaffold as an orthopedic implant material with a special
emphasis on its excellent biomechanical properties and in vitro biocompatibility with a high preference by osteoblast-like cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Porous Ti-Mo alloy samples with different porosities from 52% to 72% were successfully fabricated by the space-holder sintering method. The pore size of the porous Ti-Mo alloy samples were ranged from 200 to 500 μm. The plateau stress and elastic modulus of the porous Ti-Mo alloy samples increases with the decreasing of the porosity. Moreover, an apatite coating on the Ti-Mo alloy after an alkali and heat treatment was obtained through soaking into a simulated body fluid (SBF). The porous Ti-Mo alloy provides promising potential for new implant materials with new bone tissue ingrowth ability, bioactivity and mechanical properties mimicking those of natural bone.