976 resultados para non linear absorption
Resumo:
The constrained compartmentalized knapsack problem can be seen as an extension of the constrained knapsack problem. However, the items are grouped into different classes so that the overall knapsack has to be divided into compartments, and each compartment is loaded with items from the same class. Moreover, building a compartment incurs a fixed cost and a fixed loss of the capacity in the original knapsack, and the compartments are lower and upper bounded. The objective is to maximize the total value of the items loaded in the overall knapsack minus the cost of the compartments. This problem has been formulated as an integer non-linear program, and in this paper, we reformulate the non-linear model as an integer linear master problem with a large number of variables. Some heuristics based on the solution of the restricted master problem are investigated. A new and more compact integer linear model is also presented, which can be solved by a branch-and-bound commercial solver that found most of the optimal solutions for the constrained compartmentalized knapsack problem. On the other hand, heuristics provide good solutions with low computational effort. (C) 2011 Elsevier BM. All rights reserved.
Resumo:
Increasing efforts exist in integrating different levels of detail in models of the cardiovascular system. For instance, one-dimensional representations are employed to model the systemic circulation. In this context, effective and black-box-type decomposition strategies for one-dimensional networks are needed, so as to: (i) employ domain decomposition strategies for large systemic models (1D-1D coupling) and (ii) provide the conceptual basis for dimensionally-heterogeneous representations (1D-3D coupling, among various possibilities). The strategy proposed in this article works for both of these two scenarios, though the several applications shown to illustrate its performance focus on the 1D-1D coupling case. A one-dimensional network is decomposed in such a way that each coupling point connects two (and not more) of the sub-networks. At each of the M connection points two unknowns are defined: the flow rate and pressure. These 2M unknowns are determined by 2M equations, since each sub-network provides one (non-linear) equation per coupling point. It is shown how to build the 2M x 2M non-linear system with arbitrary and independent choice of boundary conditions for each of the sub-networks. The idea is then to solve this non-linear system until convergence, which guarantees strong coupling of the complete network. In other words, if the non-linear solver converges at each time step, the solution coincides with what would be obtained by monolithically modeling the whole network. The decomposition thus imposes no stability restriction on the choice of the time step size. Effective iterative strategies for the non-linear system that preserve the black-box character of the decomposition are then explored. Several variants of matrix-free Broyden`s and Newton-GMRES algorithms are assessed as numerical solvers by comparing their performance on sub-critical wave propagation problems which range from academic test cases to realistic cardiovascular applications. A specific variant of Broyden`s algorithm is identified and recommended on the basis of its computer cost and reliability. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
For the first time, we introduce a class of transformed symmetric models to extend the Box and Cox models to more general symmetric models. The new class of models includes all symmetric continuous distributions with a possible non-linear structure for the mean and enables the fitting of a wide range of models to several data types. The proposed methods offer more flexible alternatives to Box-Cox or other existing procedures. We derive a very simple iterative process for fitting these models by maximum likelihood, whereas a direct unconditional maximization would be more difficult. We give simple formulae to estimate the parameter that indexes the transformation of the response variable and the moments of the original dependent variable which generalize previous published results. We discuss inference on the model parameters. The usefulness of the new class of models is illustrated in one application to a real dataset.
Resumo:
A Hamiltonian system perturbed by two waves with particular wave numbers can present robust tori, which are barriers created by the vanishing of the perturbed Hamiltonian at some defined positions. When robust tori exist, any trajectory in phase space passing close to them is blocked by emergent invariant curves that prevent the chaotic transport. Our results indicate that the considered particular solution for the two waves Hamiltonian model shows plenty of robust tori blocking radial transport. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We present a non-linear symplectic map that describes the alterations of the magnetic field lines inside the tokamak plasma due to the presence of a robust torus (RT) at the plasma edge. This RT prevents the magnetic field lines from reaching the tokamak wall and reduces, in its vicinity, the islands and invariant curve destruction due to resonant perturbations. The map describes the equilibrium magnetic field lines perturbed by resonances created by ergodic magnetic limiters (EMLs). We present the results obtained for twist and non-twist mappings derived for monotonic and non-monotonic plasma current density radial profiles, respectively. Our results indicate that the RT implementation would decrease the field line transport at the tokamak plasma edge. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Assuming that nuclear matter can be treated as a perfect fluid, we study the propagation of perturbations in the baryon density. The equation of state is derived from a relativistic mean field model, which is a variant of the non-linear Walecka model. The expansion of the Euler and continuity equations of relativistic hydrodynamics around equilibrium configurations leads to differential equations for the density perturbation. We solve them numerically for linear and spherical perturbations and follow the propagation of the initial pulses. For linear perturbations we find single soliton solutions and solutions with one or more solitons followed by ""radiation"". Depending on the equation of state a strong damping may occur. We consider also the evolution of perturbations in a medium without dispersive effects. In this case we observe the formation and breaking of shock waves. We study all these equations also for matter at finite temperature. Our results may be relevant for the analysis of RHIC data. They suggest that the shock waves formed in the quark gluon plasma phase may survive and propagate in the hadronic phase. (C) 2009 Elseiver. B.V. All rights reserved.
Resumo:
The purpose of this work is to study the potentialities in the phase-shifting real-time holographic interferometry using photorefractive crystals as the recording medium for wave-optics analysis in optical elements and non-linear optical materials. This technique was used for obtaining quantitative measurements from the phase distributions of the wave front of lens and lens systems along the propagation direction with in situ visualization, monitoring and analysis in real time. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
We consider the three-particle scattering S-matrix for the Landau-Lifshitz model by directly computing the set of the Feynman diagrams up to the second order. We show, following the analogous computations for the non-linear Schrdinger model [1, 2], that the three-particle S-matrix is factorizable in the first non-trivial order.
Resumo:
In the last ten to fifteen years, there has been a predominant belief that the linear-supralinear-sublinear behaviour of the TL response of alkali halides to the radiation dose necessarily occurs in the heating stage for TL reading. It is based on the assumption that coloration in these crystals grows linear-sublinearly with the dose during irradiation. Since both colour centre and TL centre are based on the same point defects the TL response should also grow linear-sublinearly with dose. In 1950, half a dozen authors showed that the coloration of F-centres in KCl takes place in two stages, the second one being responsible for non-linear behaviour. In this paper, we show that indeed in NaCl both F-centre and TL grow linear-supralinear-sublinearly with the dose during irradiation.
Resumo:
Assuming that nuclear matter can be treated as a perfect fluid, we study the propagation of perturbations in the baryon density at high temperature. The equation of state is derived from the non-linear Walecka model. The expansion of the Euler and continuity equations of relativistic hydrodynamics around equilibrium configurations lead to the breaking wave equation for the density perturbation. We solve it numerically for this perturbation and follow the propagation of the initial pulses.
Resumo:
Quantum chemical calculations were carried out to explain the observed shifts in the absorption spectrum of different azo-aromatic compounds due to changes in the dihedral angle of the azo-group. Our results reveal that the pi-pi* transition presents a hypsochromic shift and an oscillator strength drop upon increase of the dihedral angle. Nevertheless, the pi-pi* transition exhibits the opposite behavior. This effect is attributed to the reduction in the pi-electron conjugation length of the molecule. Experimentally, we performed temperature dependence measurements of the linear absorption spectrum. Both the theoretical and experimental results demonstrate that small energy changes are mirrored in the electronic transitions of conjugated linear molecules. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We construct static soliton solutions with non-zero Hopf topological charges to a theory which is an extension of the Skyrme-Faddeev model by the addition of a further quartic term in derivatives. We use an axially symmetric ansatz based on toroidal coordinates, and solve the resulting two coupled non-linear partial differential equations in two variables by a successive over-relaxation (SOR) method. We construct numerical solutions with Hopf charge up to four, and calculate their analytical behavior in some limiting cases. The solutions present an interesting behavior under the changes of a special combination of the coupling constants of the quartic terms. Their energies and sizes tend to zero as that combination approaches a particular special value. We calculate the equivalent of the Vakulenko and Kapitanskii energy bound for the theory and find that it vanishes at that same special value of the coupling constants. In addition, the model presents an integrable sector with an in finite number of local conserved currents which apparently are not related to symmetries of the action. In the intersection of those two special sectors the theory possesses exact vortex solutions (static and time dependent) which were constructed in a previous paper by one of the authors. It is believed that such model describes some aspects of the low energy limit of the pure SU(2) Yang-Mills theory, and our results may be important in identifying important structures in that strong coupling regime.
Resumo:
This Letter describes a method for the quantification of the diversity of non-linear dynamics in complex networks as a consequence of self-avoiding random walks. The methodology is analyzed in the context of theoretical models and illustrated with respect to the characterization of the accessibility in urban streets. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The potential profile for a model of squid axon membrane has been determined for two physiological states: resting and action states. The non-linear Poisson-Boltzmann equation has been solved by considering the volumetric charge densities due to charges dissolved in an electrolytic solution and fixed on both glycocalyx and cytoplasmatic proteins. Results showing the features of the potential profile along the outer electrolytic region are similar for both resting and action states. However, the potential fall along glycocalyx at action state is lower than at resting. A small variation in the Na+ concentration drastically affects the surface membrane potentials and vice versa. We conclude that effects on the potential profile due to surface lipidic bilayer charge and contiguous electric double layers are more relevant than those provoked by fixed charges distributed along the cell cytoplasm. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The surface modification and crystallization process of BaO-B2O3-SiO2 glass compositions when exposed to CO2 laser irradiation was evaluated as a function of the laser power, irradiation time and surface condition. The glass surface was modified by the application of laser power exceeding 0.40 W and an irradiation time of more than 300 s. Micro-Raman and X-ray diffraction measurements revealed at high laser power the formation of beta-BaB2O4 (beta-BBO) crystalline phase. The crystallization of the irradiated region was enhanced when beta-BBO micrometer sized particles were dispersed on the surface of the glass sample. The intensity of the second harmonic generation observed in the crystallized region was found to depend mainly on the condition of the glassy surface prior to glass irradiation. (C) 2007 Elsevier B.V. All rights reserved.