994 resultados para local coefficients
Resumo:
Excitation rate coefficients, for transitions from the ground level to excited levels of Gd XXXVII, have been calculated over the temperature range 5002500 eV using the R-matrix method. It is observed that the contribution of resonances enhances the rates by up to an order of magnitude over the available (non- resonant) results of Hagelstein.
Resumo:
Collision strengths for all transitions up to and including the n = 5 levels of Al XIII have been computed in the LS coupling scheme using the R-matrix code. All partial waves with angular momentum L less than or equal to 45 have been included, and resonances have been resolved in a fine energy grid in the threshold region. Collision strengths are tabulated at energies above thresholds in the range 162.30 less than or equal to E less than or equal to 220.0 Ry, and results for the 1s-2s and 1s-2p transitions are compared with those of previous authors. Additionally, effective collision strengths, obtained after integrating the collision strengths over a Maxwellian distribution of electron velocities, are tabulated over a wide temperature range of 4.40 less than or equal to log T-e less than or equal to 6.40 K.
Resumo:
Photoionization cross-sections out of the fine-structure levels (2S(2)2p(4) P-3(2,0,1)) of the O-like Fe ion Fe XIX have been reinvestigated. Data for photoionization out of each of these finestructure levels have been obtained, where the calculations have been performed with and without the inclusion of radiation damping on the resonance structure in order to assess the importance of this process. Recombination rate coefficients are determined using the Milne relation, for the case of an electron recombining with N-like Fe ions (Fe XX) in the ground state to form O-like Fe (Fe XIX) existing in each of the fine- structure ground-state levels. Recombination rates are presented over a temperature range similar to 4.0 less than or equal to log T-e less than or equal to 7.0, of importance to the modelling of X-ray emission plasmas.
Resumo:
The problems related to the management of large quantum registers could be handled in the context of distributed quantum computation: unitary non-local transformations among spatially separated local processors are realized performing local unitary transformations and exchanging classical communication. In this paper, a scheme is proposed for the implementation of universal non-local quantum gates such as a controlled NOT (CNOT) and a controlled quantum phase gate (CQPG). The system chosen for their physical implementation is a cavity-quantum-electrodynamics (CQED) system formed by two spatially separated microwave cavities and two trapped Rydberg atoms. The procedures to follow for the realization of each step necessary to perform a specific non-local operation are described.
Resumo:
The development of cultural policy analysis by social science has been produced a theorization about cultural policy models from sociology and political science. This analysis shows the influence of the national model of cultural policy on the forms of governance and management of cultural facilities. However, in this paper we will defend that currently the local model of cultural policy decisively influences the model of cultural institutions. This is explained by the growing importance of culture in local development strategies. In order to demonstrate this we will analyze the case of the Barcelona Model of local development and cultural policy, that is characterized for the level of local government leadership, multilevel governance, the use of culture in urban planning processes and a tendency to use public-private partnership in public management. This Model influences the genesis and development of the cultural facilities and it produces a singular and relatively successful model.
Resumo:
Collisional effects can have strong influences on the population densities of excited states in gas discharges at elevated pressure. The knowledge of the pertinent collisional coefficient describing the depopulation of a specific level (quenching coefficient) is, therefore, important for plasma diagnostics and simulations. Phase resolved optical emission spectroscopy (PROES) applied to a capacitively coupled rf discharge excited with a frequency of 13.56 MHz in hydrogen allows the measurement of quenching coefficients for emitting states of various species, particularly of noble gases, with molecular hydrogen as a collision partner. Quenching coefficients can be determined subsequent to electron-impact excitation during the short field reversal phase within the sheath region from the time behavior of the fluorescence. The PROES technique based on electron-impact excitation is not limited â?? in contrast to laser techniques â?? by optical selection rules and the energy gap between the ground state and the upper level of the observed transition. Measurements of quenching coefficients and natural fluorescence lifetimes are presented for several helium (3 1S,4 1S,3 3S,3 3P,4 3S), neon (2p1 ,2p2 ,2p4 ,2p6), argon (3d2 ,3d4 ,3d18 and 3d3), and krypton (2p1 ,2p5) states as well as for some states of the triplet system of molecular hydrogen.