982 resultados para lignocelullosic biomass


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The composition and vertical distribution of planktonic ciliates within the surface layer was monitored over four diel cycles in May 95, during the JGOFS-France DYNAPROC cruise in the Ligurian Sea (NW Mediterranean). Ciliates were placed into size and trophic categories: micro- and nano-heterotrophic ciliates, mixotrophic ciliates, tintinnids and the autotrophic Mesodinium rubrum. Mixotrophic ciliates (micro and nano) represented an average of 46% of oligotrich abundance and 39% of oligotrich biomass; nano-ciliates (hetero and mixotrophic) were abundant, representing about 60 and 17% of oligotrich abundance and biomass, respectively. Tintinnid ciliates were a minor part of heterotrophic ciliates. The estimated contribution of mixotrophs to chlorophyll a concentration was modest, never exceeding 9% in discrete samples. Vertical profiles of ciliates showed that chlorophyll-containing ciliates (mixotrophs and autotrophs) were mainly concentrated and remained at the chlorophyll a maximum depth. In contrast, among heterotrophic ciliates, a portion of the population appeared to migrate from 20-30 m depth during the day to the surface at night or in the early morning. Correlation analyses of ciliate groups and phytoplankton pigments showed a strong relationship between nano-ciliates and zeaxanthin, and between chlorophyll-containing ciliates and chlorophyll a, as well as other pigments that were maximal at the chlorophyll a maximum depth. Total surface layer concentrations showed minima of ciliates during nightime/early morning hours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This data set contains aboveground community biomass (Sown plant community, measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested in September 2002 just prior to mowing (during peak standing biomass) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in one rectangle of 0.2 x 0.5 m per large plot. The location of the rectangle was assigned prior to harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangle within plots were identical for all plots. The harvested biomass was sorted into categories: in 2002 only individual species for the sown plant species were separated and processed. All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.